SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moore John C 1961 ) "

Sökning: WFRF:(Moore John C 1961 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tilmes, Simone, et al. (författare)
  • The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:19, s. 11036-11058
  • Tidskriftsartikel (refereegranskat)abstract
    •  The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.
  •  
2.
  • Beaudon, Emelie, et al. (författare)
  • Lomonosovfonna and Holtedahlfonna ice cores reveal east west disparities of the Spitsbergen environment since AD 1700
  • 2013
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 59:218, s. 1069-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • An ice core extracted from Holtedahlfonna ice cap, western Spitsbergen, record spanning the period 1700–2005, was analyzed for major ions. The leading empirical orthogonal function (EOF) component is correlated with an index of summer melt (log([Na + ]/[Mg 2+ ]) from 1850 and shows that almost 50% of the variance can be attributed to seasonal melting since the beginning of the industrial revolution. The Holtedahlfonna d 18 O value is less negative than in the more easterly Lomonosovfonna ice core, suggesting that moist air masses originate from a closer source, most likely the Greenland Sea. During the Little Ice Age the lower methanesulfonic acid (MSA) concentration and MSA non-sea-salt sulfate fraction are consistent with the Greenland Sea as the main source for biogenic ions in the ice cores. Both the melt index and the MSA fraction suggest that the early decades of the 18th century may have exhibited the coldest summers of the last 300 years in Svalbard. Ammonium concentrations rise from 1880, which may result from the warming of the Greenland Sea or from zonal differences in atmospheric pollution transport over Svalbard. During winter, neutralized aerosols are trapped within the tropospheric inversion layer, which is usually weaker over open seas than over sea ice, placing Holtedahlfonna within the inversion more frequently than Lomonosovfonna.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy