SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Morina Ardian) "

Search: WFRF:(Morina Ardian)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dhakal, Nayan, et al. (author)
  • Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers
  • 2023
  • In: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854 .- 2214-0697. ; 23, s. 1252-1272
  • Journal article (peer-reviewed)abstract
    • Additive manufacturing (AM), also known as three-dimensional (3D) printing, of polymer-based materials is growing as a time-efficient, economical, and environmentally sustainable technique for prototype development in load-bearing applications. This work investigates the defects arising from the processing in material extrusion-based AM of polymers and their impact on the part performance. The influence of raster angle orientation and printing speed on tribological characteristics, microstructure, and surface finish of acrylonitrile butadiene styrene (ABS) fabricated in a heated build chamber was studied. Comprehensive analysis with fractography and tomography revealed the formation, distribution, and locations of internal voids, while surface defects were studied with the topography analysis of as-printed surfaces. Surface roughness and tribological results show that printing speed can be optimally increased with a minimal impact on interlayer bonding and part performance. Increased printing speed allowed up to 58% effective reduction in printing time obtaining comparable mechanical properties at varying process parameters. 3D printed ABS exhibited dry sliding friction coefficients in the range of 0.18–0.23, whilst the maximum specific wear rate was 6.2 × 10−5 mm3/Nm. Higher surface roughness and increased printing speed exhibited delayed running-in during dry sliding, while insignificant influence was observed for steady-state friction and wear behaviors. The findings indicate that improved surface finish and reduced internal defects can be achieved with a controlled build environment allowing for higher printing speed. The observations in this study are evidence that 3D printing can be adapted for the sustainable manufacturing of polymeric components for tribological applications.
  •  
2.
  • Dhakal, Nayan, et al. (author)
  • Tribological performance of 3D printed neat and carbon fiber reinforced PEEK composites
  • 2024
  • In: Tribology International. - 0301-679X .- 1879-2464. ; 193
  • Journal article (peer-reviewed)abstract
    • This work investigates the tribological behavior of neat and carbon fiber-reinforced polyether-ether-ketone (PEEK) materials processed using the fused filament fabrication (FFF) technique. The reciprocating sliding behavior of printed polymers against stainless steel (SS) under dry and water-lubricated conditions was studied. The running-in behavior and evolution of friction were dependent on the material combination and sliding conditions. PEEK reinforced with 10 wt% carbon fibers was optimal considering tribological performance. Neat PEEK exhibited a combination of abrasive and adhesive wear mechanisms, while composites primarily showed fiber-matrix debonding and delamination during sliding. The outcome of this work has significance in improving the processing design of PEEK-based materials in extrusion-based 3D printing for tribological applications.
  •  
3.
  • Sin, Jorge Rituerto (author)
  • Investigation of hafnium for biomedical applications : corrosion and tribocorrosion in simulated body fluids
  • 2013
  • Licentiate thesis (other academic/artistic)abstract
    • Metals have excellent properties, such as high strength, ductility and toughness, which make them the material of choice for many biomedical applications. However, the main drawback of metals is their general tendency to corrode, which is an important factor when they are used as biomaterials due to the corrosive nature of the human body.Titanium and titanium alloys are widely used in biomedical devices due to their excellent corrosion resistance and good biocompatibility. However, one of the disadvantages of titanium is its low wear resistance. Hafnium is a passive metal with a number of interesting properties, such as high ductility and strength, as well as resistance to corrosion and mechanical damage. Previous studies have shown that hafnium has good biocompatibility and osteogenesis. However, the behaviour of hafnium in biological environment has not been studied in great depth. Furthermore, little is known about the resistance of the passive layer under wear-corrosion conditions and the effect of proteins on its corrosion and tribocorrosion behaviour. The overall goal of this study is to assess the potential of hafnium for use in biomedical applications. The aim of this work is to investigate the corrosion resistance of hafnium in simulated body fluids as well as its behaviour in wear corrosion and fretting corrosion conditions.The results showed that hafnium presents a passive state in the presence of proteins and its oxide layer provides high protection to corrosion. In addition, although the passive layer could be disrupted due to wear and fretting, increasing the corrosion of the metal, it was rapidly rebuilt when the damaging ceased. On the other hand, the main drawback of hafnium was its tendency to suffer from localised corrosion. Although the formation of corrosion pits was retarded in the presence of proteins, it was drastically increased when hafnium was scratched or subjected to fretting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view