SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morozov Evgeny V.) "

Sökning: WFRF:(Morozov Evgeny V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Morozov, Anatolii V., et al. (författare)
  • Retardation of Structure Densification by Increasing Covalency in Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:15, s. 6779-6791
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the outstanding discharge capacity provided by oxygen redox activity, Li-rich layered oxide positive electrode materials for Li-ion batteries attract tremendous attention. However, there is still no full consensus on the role that the ionocovalency of transition metal (TM)–oxygen (O) chemical bonding plays in the reversibility of the oxygen redox as well as on both local crystal and electronic structure transformations. Here, we managed to tune the cationic/anionic redox contributions to the overall electrochemical activity using the xLi2RuO3-(1 – x)Li1.2Ni0.2Mn0.6O2 solid solutions as a model system possessing the same crystal structure and morphology as Li-rich layered oxides. We conclusively traced the whole cascade of events from increasing the covalency of the TM–O bond, suppressing irreversible oxygen oxidation to the generation of the reduced Mn species toward retarding the structure “densification” in the Li-rich layered oxides. The results demonstrate that enhancing the degree of covalency of the TM–O bonding is vitally important for anchoring the reversibility of the charge compensation mechanism occurring through partial oxygen oxidation.
  •  
3.
  • Fang, Yuan, et al. (författare)
  • Lithium insertion in hard carbon as observed by 7Li NMR and XRD. The local and mesoscopic order and their relevance for lithium storage and diffusion
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:18, s. 10069-10082
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate hard carbon fibers in different states of charge by a combination of 7Li-NMR and 2D-XRD. In particular, we record the quadrupole-split 7Li-NMR spectra and 7Li longitudinal relaxation over a wide temperature range, and determine lithium self-diffusion both parallel and perpendicular to the fiber axis. Recording the temperature dependence permits us to interpret the presence of motional averaging of spin couplings for mobile Li. The joint analysis shows that at low Li content, Li occupies sites that lack ordered coordination and delocalized electrons and are collected in disordered spatial domains. Upon increasing the Li content, ordered sites collected in ordered domains become populated. Both disordered and ordered domains have a high inherent heterogeneity with a typical spatial extension of a few nanometers. The disordered domains exhibit a continuous topology that permits unhindered diffusion within it. At high Li content we also observe the presence of very small (∼nm) particles of metallic lithium. The joint analysis of XRD in combination with diffusion anisotropy, and anisotropy from the 7Li-NMR spectrum (with samples oriented differently with regard to the applied magnetic field), shows that the mesoscopic structure is made by ordered domains arranged in a cylindrically rolled-up manner with the mesoscopic axis parallel to the fiber axis. 
  •  
4.
  • Sun, Bing, et al. (författare)
  • Ion transport in polycarbonate based solid polymer electrolytes : experimental and computational investigations
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 18:14, s. 9504-9513
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with epsilon-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li+ and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li+-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy