SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moschen I) "

Sökning: WFRF:(Moschen I)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charman, D. J., et al. (författare)
  • Climate-related changes in peatland carbon accumulation during the last millennium
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:2, s. 929-944
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
  •  
2.
  •  
3.
  • Wagner, C A, et al. (författare)
  • Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR : implications for cystic fibrosis.
  • 2001
  • Ingår i: Cellular Physiology and Biochemistry. - 1015-8987 .- 1421-9778. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cystic fibrosis (CF) is characterized by impaired Cl(-) secretion and increased Na(+) reabsorption in several tissues including respiratory epithelium. Many CFTR mutations have been identified over the past years. However, only a poor correlation between the genotype and lung phenotype was found suggesting additional factors influencing the phenotype and course of the disease. The serine/threonine kinase SGK1 has recently been shown to stimulate the activity of the epithelial Na(+) channel ENaC. A variety of stimuli such as aldosterone, cell shrinkage, insulin or TGF-beta1 stimulate transcription and activate the SGK1 kinase. Here we further examined the effects of SGK1 on ENaC and CFTR which have mutual interactions and we analyzed sgk1 mRNA abundance in lung tissue from CF patients. Coexpression of CFTR and h-SGK1 in Xenopus oocytes increased ENaC currents as previously described. In addition CFTR mediated currents were also stimulated. h-SGK1 accelerated the expression of the amiloride sensitive Na(+)- current in Xenopus oocytes paralleled by increased ENaC-protein abundance in the oocyte membrane, an effect which was reversed by a h-SGK1(K127R) mutation lacking the ATP-binding site. The cation selectivity or Na(+) affinity were not affected. However, coexpression of h-SGK1 with ENaC altered the sensitivity of the Na(+)-channel to the inhibitors amiloride and triamterene. The inhibitory effect of CFTR expression on ENaC current was not affected by coexpression of h-SGK1 in Xenopus oocytes. Lung tissue from CF patients strongly expressed the serine/threonine kinase h-sgk1 which was not the case for non-CF lung tissue. Loss of CFTR function itself in a CF lung epithelial cell line did not increase SGK1 expression. In summary, enhanced expression of h-SGK1 in epithelial cells of CF-lung tissue may be a novel pathophysiological factor contributing to increased Na(+) channel activity and thus to increased Na(+) transport in CF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy