SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mountcastle Jacquelyn) "

Search: WFRF:(Mountcastle Jacquelyn)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bentley, Blair P., et al. (author)
  • Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:7
  • Journal article (peer-reviewed)abstract
    • Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
  •  
2.
  • Dahn, Hollis A., et al. (author)
  • Benchmarking ultra-high molecular weight DNA preservation methods for long-read and long-range sequencing
  • 2022
  • In: GigaScience. - : Oxford University Press. - 2047-217X. ; 11
  • Journal article (peer-reviewed)abstract
    • Background: Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types.Results: We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20-25% DMSO-EDTA showed little fragment length degradation when stored at 4 degrees C for 6 hours. Samples in 95% EtOH or 20-25% DMSO-EDTA kept at 4 degrees C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield.Conclusion: We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all similar to 70,000 extant vertebrate species.
  •  
3.
  • Karawita, Anjana C., et al. (author)
  • The swan genome and transcriptome, it is not all black and white
  • 2023
  • In: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24:1
  • Journal article (peer-reviewed)abstract
    • BackgroundThe Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information.ResultsHere, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan.ConclusionTogether, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.
  •  
4.
  • Mueller, Ralf C., et al. (author)
  • A high-quality genome and comparison of short-versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck)
  • 2021
  • In: GigaScience. - : Oxford University Press. - 2047-217X. ; 10:12
  • Journal article (peer-reviewed)abstract
    • Background: The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome.Findings: This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families.Conclusions: This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long -read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view