SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mráz Stanislav) "

Sökning: WFRF:(Mráz Stanislav)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achenbach, Jan-Ole, et al. (författare)
  • Correlative Experimental and Theoretical Investigation of the Angle-Resolved Composition Evolution of Thin Films Sputtered from a Compound Mo2BC Targe
  • 2019
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The angle-resolved composition evolution of Mo-B-C thin films deposited from a Mo2BC compound target was investigated experimentally and theoretically. Depositions were carried out by direct current magnetron sputtering (DCMS) in a pressure range from 0.09 to 0.98 Pa in Ar and Kr. The substrates were placed at specific angles α with respect to the target normal from 0 to ±67.5°. A model based on TRIDYN and SIMTRA was used to calculate the influence of the sputtering gas on the angular distribution function of the sputtered species at the target, their transport through the gas phase, and film composition. Experimental pressure- and sputtering gas-dependent thin film chemical composition data are in good agreement with simulated angle-resolved film composition data. In Ar, the pressure-induced film composition variations at a particular α are within the error of the EDX measurements. On the contrary, an order of magnitude increase in Kr pressure results in an increase of the Mo concentration measured at α = 0° from 36 at.% to 43 at.%. It is shown that the mass ratio between sputtering gas and sputtered species defines the scattering angle within the collision cascades in the target, as well as for the collisions in the gas phase, which in turn defines the angle- and pressure-dependent film compositions.
  •  
2.
  • Aghda, Soheil Karimi, et al. (författare)
  • Ion kinetic energy- and ion flux-dependent mechanical properties and thermal stability of (Ti,Al)N thin films
  • 2023
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion-irradiation-induced changes in structure, elastic properties, and thermal stability of metastable c-(Ti,Al)N thin films synthesized by high-power pulsed magnetron sputtering (HPPMS) and cathodic arc deposition (CAD) are systematically investigated by experiments and density functional theory (DFT) simulations. While films deposited by HPPMS show a random orientation at ion kinetic energies (Ek)>105 eV, an evolution towards (111) orientation is observed in CAD films for Ek>144 eV. The measured ion energy flux at the growing film surface is 3.3 times larger for CAD compared to HPPMS. Hence, it is inferred that formation of the strong (111) texture in CAD films is caused by the ion flux-and ion energy-induced strain energy minimization in defective c-(Ti,Al)N. The ion energy-dependent elastic modulus can be rationalized by considering the ion energy-and orientation -dependent formation of point defects from DFT predictions: The balancing effects of bombardment-induced Frenkel defects formation and the concurrent evolution of compressive intrinsic stress result in the apparent independence of the elastic modulus from Ek for HPPMS films without preferential orientation. However, an ion energy-dependent elastic modulus reduction of similar to 18% for the CAD films can be understood by considering the 34% higher Frenkel pair concentration formed at Ek=182 eV upon irradiation of the experimentally observed (111)-oriented (Ti,Al)N in comparison to the (200)-configuration at similar Ek. Moreover, the effect of Frenkel pair concentration on the thermal stability of metastable c-(Ti,Al)N is investigated by differential scanning calorimetry: Ion-irradiation-induced increase in Frenkel pairs concentration retards the wurtzite formation temperature by up to 206 degrees C.
  •  
3.
  • Azina, Clio, et al. (författare)
  • Oxidation behaviour of V2AlC MAX phase coatings
  • 2020
  • Ingår i: Journal of the European Ceramic Society. - : ELSEVIER SCI LTD. - 0955-2219 .- 1873-619X. ; 40:13, s. 4436-4444
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the oxidation behaviour of V2AlC coatings up to 800 degrees C, in air. The coatings were deposited at 580 degrees C using magnetron sputtering from a powder metallurgical composite V2AlC target and were subsequently oxidised for 5, 15 and 30 min. The microstructural evolution of the samples was investigated, and X-ray diffraction patterns were collected to track the formation of oxides. The first indications of oxidation appear after just 15 min at 500 degrees C, as V-based oxides grew on the surface of the coatings. Later, the presence of mostly V-based oxides and ternary (V, Al)-oxides was observed starting after 5 min at 600 degrees C. Further analyses confirmed outward diffusion of V and inward diffusion of O, while Al tends to sublimate. alpha-A12O3 was only indexed after 5 min at 800 degrees C. Ex-situ electrical resistivity measurements allowed tracking the oxidation progress of the V2AlC coating.
  •  
4.
  • Bakhit, Babak, 1983-, et al. (författare)
  • Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating
  • 2021
  • Ingår i: Vacuum. - : Elsevier. - 0042-207X .- 1879-2715. ; 186
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for developing synthesis techniques that allow the growth of high-quality functional films at low substrate temperatures to minimize energy consumption and enable coating temperature-sensitive substrates. A typical shortcoming of conventional low-temperature growth strategies is insufficient atomic mobility, which leads to porous microstructures with impurity incorporation due to atmosphere exposure, and, in turn, poor mechanical properties. Here, we report the synthesis of dense Ti0.67Hf0.33B1.7 thin films with a hardness of ∼41.0 GPa grown without external heating (substrate temperature below ∼100 °C) by hybrid high-power impulse and dc magnetron co-sputtering (HfB2-HiPIMS/TiB2-DCMS) in pure Ar on Al2O3(0001) substrates. A substrate bias potential of −300 V is synchronized to the target-ion-rich portion of each HiPIMS pulse. The limited atomic mobility inherent to such desired low-temperature deposition is compensated for by heavy-mass ion (Hf+) irradiation promoting the growth of dense Ti0.67Hf0.33B1.7.
  •  
5.
  • Bonninghoff, Niklas, et al. (författare)
  • ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering
  • 2021
  • Ingår i: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 412
  • Tidskriftsartikel (refereegranskat)abstract
    • High-power impulse magnetron sputtering (HiPIMS) is a thin film deposition technique that combines the advantages of energetic deposition methods with magnetron sputtering. HiPIMS has so far mostly been utilized for the growth of crystalline coatings. Here we offer a study devoted to metallic glasses, in which we compare Zr60Cu25Al10Ni5 (target composition) thin films deposited by conventional direct current magnetron sputtering (DC) and HiPIMS. Film microstructure is strongly dependent on the choice of the sputtering method. The DC layers show a columnar structure with intra-columnar porosity, which provides a pathway for oxygen diffusion into the film. In contrast, HiPIMS films are column-free and possess about 4% higher density, as revealed by X-ray reflectivity. Electron diffraction reveals a decrease in average atomic spacing for the latter film of about 12%. These differences in film properties and morphology can be attributed to an increase in ad-atom mobility during HiPIMS caused by an increase in ion energy and flux of the film-forming species enabling a more efficient energy and momentum transfer to the growing film surface. The relative contribution of metallic and hence film forming ions to the overall ion flux of the DC plasma compared to the HiPIMS plasma is 13% and 96%, respectively. Additionally, a substrate bias causes the ionized film forming species during HiPIMS to arrive close to the substrate normal reducing shadowing effects. Different microstructures have a direct effect on the average roughness values, which for DC and HiPIMS films are 1.4 nm and 0.2 nm, respectively. The indentation hardness H and Youngs modulus E are higher for the HiPIMS sample, at 9.2 +/- 0.3 GPa and 131.6 +/- 3.6 GPa, respectively. The increase in hardness for the HiPIMS sample as compared to the DC sample (similar to 35%) can be attributed to higher film density, compressive (HiPIMS) as opposed to tensile (DC) stress and the lack of a columnar structure.
  •  
6.
  • Charalampopoulou, Evangelia, et al. (författare)
  • Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C
  • 2021
  • Ingår i: Materials Characterization. - : ELSEVIER SCIENCE INC. - 1044-5803 .- 1873-4189. ; 178
  • Tidskriftsartikel (refereegranskat)abstract
    • This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
  •  
7.
  • Chien, Yu-Ping, et al. (författare)
  • Deviations between film and target compositions induced by backscattered Ar during sputtering from M-2-Al-C (M = Cr, Zr, and Hf) composite targets
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 446
  • Tidskriftsartikel (refereegranskat)abstract
    • M-Al-C (M = Cr, Zr, and Hf) thin films are deposited from stoichiometric M2AlC composite targets by direct current magnetron sputtering (DCMS) and high power pulsed magnetron sputtering (HPPMS) in an industrial coater. Using DCMS it is observed that the composition of the Cr-Al-C film is close to stoichiometric, while the Al concentration in the Zr-Al-C and Hf-Al-C films is significantly reduced compared to the Al concentration in the targets. It is evident that the magnitude of the difference in Al concentration between the target and the cor-responding film composition is strongly dependent on the atomic mass of the transition metal. Zr and Hf atoms are 1.8 and 3.4 times heavier than Cr. In HPPMS, the target potential is approximately 1.6 times larger than that in DCMS, which can result in the film compositions deviating even stronger from the target composition as compared to DCMS. The Zr-Al-C thin film deposited by HPPMS exhibits a larger Al-deficiency than the film deposited by DCMS. The energy distributions of backscattered Ar neutrals are simulated by utilizing a two-body collision model and the Transport of Ions in Matter (TRIM) code. Based on the simulation results the experimentally observed Al -deficient film compositions can be readily explained: As the mass of the transition metal in the target is increased, both, energy and flux of the (at the target) reflected Ar is increased causing preferential re-sputtering of Al in the films. As stoichiometric compositions are a prerequisite for the formation of single-phase compound thin films it is evident that composite targets with a transition metal mass-dependent Al-overstoichiometry are required to compensate the Al-loss induced by the energetic Ar neutrals.
  •  
8.
  • Greczynski, Grzegorz, et al. (författare)
  • Control over the Phase Formation in Metastable Transition Metal Nitride Thin Films by Tuning the Al+ Subplantation Depth
  • 2019
  • Ingår i: Coatings. - : MDPI. - 2079-6412. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of transition metal nitride based coatings deposited by magnetron sputtering, in a broad range of applications including wear-protective coatings on cutting tools and components in automotive engines, is determined by their phase content. The classical example is the precipitation of thermodynamically-favored wurtzite-AlN while alloying TiN with Al to obtain ternary single phase NaCl-structure films with improved high-temperature oxidation resistance. Here, we report on reactive high-power impulse and direct current magnetron co-sputtering (HiPIMS/DCMS) growth of Ti0.31Al0.69N and Zr0.48Al0.52N thin films. The Al concentrations are intentionally chosen to be higher than theoretically predicted solubility limits for the rock salt structure. The goal is to investigate the effect of the incident Al+ energy E-Al(+), controlled by varying the amplitude of the substrate bias applied synchronously with the Al+-rich portion of the ion flux from the Al-HiPIMS source, on the crystalline phase formation. For EAl+ amp;lt;= 60 eV, films contain predominantly the wurtzite phase. With increasing E-Al(+), and thus, the Al subplantation depth, the relative fraction of the NaCl structure increases and eventually for E-Al(+) amp;gt; 250 eV, Ti0.31Al0.69N and Zr0.48Al0.52N layers contain more than 95% of the rock salt phase. Thus, the separation of the film forming species in time and energy domains determines the phase formation of Ti0.31Al0.69N and Zr0.48Al0.52N layers and enables the growth of the cubic phase outside of the predicted Al concentration range. The new film growth concept can be applied to the entire family of multinary transition metal aluminum nitrides, where one of the metallic film constituents is available in the ionized form while the other arrives as neutral.
  •  
9.
  • Holzapfel, Damian M., et al. (författare)
  • Influence of ion irradiation-induced defects on phase formation and thermal stability of Ti0.27Al0.21N0.52 coatings
  • 2022
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of changes induced by ion irradiation on structure and thermal stability of metastable cubic (Ti,Al)N coatings deposited by cathodic arc evaporation is systematically investigated by correlating experiments and theory. Decreasing the nitrogen deposition pressure from 5.0 to 0.5 Pa results in an ion flux-enhancement by a factor of three and an increase of the average ion energy from 15 to 30 eV, causing the stress-free lattice parameter to expand from 4.170 to 4.206 Å, while the chemical composition of Ti0.27Al0.21N0.52 remains unchanged. The 0.9% lattice parameter increase is a consequence of formation of Frenkel pairs induced by ion bombardment, as revealed by density functional theory (DFT) simulations. The influence of the presence of Frenkel pairs on the thermal stability of metastable Ti0.27Al0.21N0.52 is investigated by scanning transmission electron microscopy, differential scanning calorimetry, atom probe tomography and in-situ synchrotron X-ray powder diffraction. It is demonstrated that the ion flux and ion energy induced formation of Frenkel pairs increases the thermal stability as the Al diffusion enabled crystallization of the wurtzite solid solution is retarded. This can be rationalized by DFT predictions since the presence of Frenkel pairs increases the activation energy for Al diffusion by up to 142%. Hence, the thermal stability enhancement is caused by a hitherto unreported mechanism - the Frenkel pair impeded Al mobility and thereby retarded formation of wurtzite solid solution.
  •  
10.
  • Hu, Chun, et al. (författare)
  • Influence of co-sputtering AlB2 to TaB2 on stoichiometry of non-reactively sputtered boride thin films
  • 2024
  • Ingår i: Materials Research Letters. - : TAYLOR & FRANCIS INC. - 2166-3831. ; 12:8, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal diboride thin films are promising functional materials for their outstanding mechanical properties and thermal stability. By combining experiment and simulations, we discuss angular distribution of the sputtered species, their scattering in the gas phase, re-sputtering and potential evaporation from the grown films for the complex evolution of film compositions, as well as energetic preference for vacancy formation and competing phases as factors for governing the phase constitution. By co-sputtering from two compound targets, we developed phase-pure crystalline (Ta,Al)B2 solid solution thin films and correlate the stoichiometry changes with the evolution of their microstructure, hardness, and elastic modulus. {GRAPHICAL ABSTRACT}
  •  
11.
  • Karimi Aghda, Soheil, et al. (författare)
  • Unravelling the ion-energy-dependent structure evolution and its implications for the elastic properties of (V,Al)N thin films
  • 2021
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion irradiation-induced changes in the structure and mechanical properties of metastable cubic (V,Al)N deposited by reactive high power pulsed magnetron sputtering are systematically investigated by correlating experiments and theory in the ion kinetic energy (Ek) range from 4 to 154 eV. Increasing Ek results in film densification and the evolution from a columnar (111) oriented structure at Ek ≤ 24 eV to a fine-grained structure with (100) preferred orientation for Ek ≥ 104 eV. Furthermore, the compressive intrinsic stress increases by 336 % to -4.8 GPa as Ek is increased from 4 to 104 eV. Higher ion kinetic energy causes stress relaxation to -2.7 GPa at 154 eV. These ion irradiation-induced changes in the thin film stress state are in good agreement with density functional theory simulations. Furthermore, the measured elastic moduli of (V,Al)N thin films exhibit no significant dependence on Ek. The apparent independence of the elastic modulus on Ek can be rationalized by considering the concurrent and balancing effects of bombardment-induced formation of Frenkel pairs (causing a decrease in elastic modulus) and evolution of compressive intrinsic stress (causing an increase in elastic modulus). Hence, the evolution of the film stresses and mechanical properties can be understood based on the complex interplay of ion irradiation-induced defect generation and annihilation.
  •  
12.
  • Kashani, Amir Hossein Navidi, et al. (författare)
  • Morphology, mechanical properties, and oxidation behavior of stoichiometric Ti0.33-xAlxB0.67 coatings (x=0.04, 0.15, 0.21, and 0.28)
  • 2024
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • Stoichiometric Ti0.33-xAlxB0.67 coatings with x = 0.04, 0.15, 0.21, and 0.28 were synthesized by magnetron sputtering and characterized regarding phase formation, mechanical properties, and oxidation behavior. By increasing the Al concentration from 4 to 28 at.%, the measured elastic modulus (496±19 GPa) and unit cell volume (25.646 Å3 ) decreased by 33 and 0.8 %, respectively. The Al concentration induced changes in measured elastic modulus and unit cell volume are in very good agreement with ab initio predictions, as the maximum deviations between experiment and theory, observed here, are 12 and 1.1 %, respectively. The corresponding hardness values decreased by 45 % from 22±1 to 12±1 GPa. The oxidation experiments were performed in ambient air at 700, 800, and 900 °C for 1, 4, and 8 h. Analysis by scanning transmission electron microscopy (STEM) revealed a bimodal, strongly Al concentration-dependent oxidation behavior where films containing ≤15 at.% of Al form a porous, non-passivating crystalline oxide scale containing Ti -rich as well as Al -rich oxide regions, while the formation of a passivating, dense, X-ray amorphous oxide scale was observed for films containing ≥ 21 at.% of Al. Coincident with the passive scale formation for Al concentrations ≥ 21 at.%, the elastic modulus decreases by ≥ 32.6 % compared to TiB2 and can be rationalized based on Al concentration induced bond weakening as revealed by the concomitant cohesive energy reduction of ≥ 22 %.
  •  
13.
  • Kashani, Amir Hossein Navidi, et al. (författare)
  • Synthesis and oxidation behavior of Ti0.35Al0.65By (y=1.7-2.4) coatings
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of B concentration on phase formation and oxidation resistance of (Ti0.35Al0.65)By coatings with y = 1.7, 2.0, 2.4 was investigated. Elemental B targets in radio frequency mode and a compound Ti0.4Al0.6 target in direct current mode were sputtered. The B concentration was varied systematically by adjusting the applied power to the respective magnetrons, while keeping the power supplied to the magnetron with the Ti0.4Al0.6 target constant. Measured lattice parameters and elastic properties are consistent with ab initio predictions. The oxidation resistance at 700 degrees C in air for up to 8 h was compared to a cathodic arc evaporated (Ti0.37Al0.63)0.49N0.51 coating with an Al/Ti ratio of 1.69 +/- 0.20 which is very similar to 1.84 +/- 0.40 for the boride coatings. Scanning transmission electron microscopy imaging revealed oxide scale thicknesses of 39 +/- 7 and 101 +/- 25 nm for (Ti0.35Al0.65)B2.0 and (Ti0.37Al0.63)0.49N0.51 after 8 h, respectively. Hence, the close to stoichiometric diboride outperforms the nitride coating. This behavior can be understood based on composition and structure analysis of the oxide scales: While the protective layer on the diboride is primarily composed of Al and O, the porous oxide layer on the nitride coating contains Ti, Al and O.
  •  
14.
  • Kashani, Amir Hossein Navidi, et al. (författare)
  • Temporally-resolved decomposition of Ti0.12Al0.21B0.67 thin films at 1000°C
  • 2024
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 487
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal stability of stoichiometric Ti0.12Al0.21B0.67 thin films synthesized by magnetron sputtering was investigated by vacuum annealing at 1000°C for 1 and 3 h. The as-deposited and post-annealed films were compared regarding changes in chemical composition, phase formation, and morphology. X-ray diffraction (XRD) data indicate the formation of a single-phase solid solution in the as-deposited Ti0.12Al0.21B0.67 thin film. After annealing for 1 h, scanning transmission electron microscopy (STEM), energy-dispersive X-ray mapping (EDX), and atom probe tomography (APT) investigations reveal segregation into Al- and Ti-rich (Ti,Al)B2 domains, consistent with spinodal decomposition. Furthermore, the formation of AlB12 with a concomitant reduction in Al concentration from 20.9 to 16.8 at. %, likely by evaporation, indicate the decomposition of Al-rich (Ti,Al)B2 domains during annealing for 1 h. Analysis of the film after annealing for 3 h shows evidence for continued spinodal decomposition as well as for further decomposition of Al-rich (Ti,Al)B2 domains, leading besides the formation of AlB12 to a reduction in Al concentration to 12.5 at. % by Al evaporation. The observed phase formation trend during in situ transmission electron microscopy (TEM) studies at 1100 degrees C is consistent with the above discussed decomposition processes. The here identified thermal stability limit, revealed with spatially resolved structure and composition probes, confines the application temperature range of Ti0.12Al0.21B0.67 in vacuum to temperatures <1000°C and underlines that thermal stability investigations solely based on XRD data result in an overestimated thermal stability.
  •  
15.
  • Liu, Sida, et al. (författare)
  • Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films
  • 2019
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 165, s. 615-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastable titanium aluminum nitride coatings are widely applied in cutting and forming applications. Although it is generally accepted that the phase formation of metastable TiAIN is governed by kinetic factors, modeling attempts today are based solely on energetics. In this work, the metastable phase formation of TiAIN is predicted based on one combinatorial magnetron sputtering experiment, the activation energy for surface diffusion, the critical diffusion distance, as well as thermodynamic calculations. The phase formation data obtained from further combinatorial growth experiments varying chemical composition, deposition temperature, and deposition rate are in good agreement with the model. Furthermore, it is demonstrated that a significant extension of the predicted critical solubility range is enabled by taking kinetic factors into account. Explicit consideration of kinetics extends the Al solubility limit to lower values, previously unobtainable by energetics, but accessible experimentally. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
16.
  • Liu, Sida, et al. (författare)
  • Stress-dependent prediction of metastable phase formation for magnetron-sputtered V1-xAlxN and Ti1-xAlxN thin films
  • 2020
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 196, s. 313-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastable transition metal aluminum nitride (TMAlN, TM = Ti, V) thin films are today deposited utilizing ionized vapor phase condensation techniques where variations in ion flux and ion energy cause compressive film stress, in turn affecting Al solubility. While the metastable phase formation of TiAlN has been modeled, the influence of film stresses on phase formation has so far been overlooked. Using combinatorial deposition via magnetron sputtering, thermodynamic modeling and density functional theory calculations, we investigated the phase formation of V1-xAlxN and Ti1-xAlxN thin films at various substrate temperatures and deposition rates. Ab initio calculations indicate that the maximum solid solubility of Al in face-centered cubic (fcc) V1-xAlxN or fcc-Ti1-xAlxN shows a linear trend as a function of the magnitude of compressive stress. Here, we consider the influence of film stresses on the metastable phase formation of fcc-V1-xAlxN and fcc-Ti1-xAlxN for the first time. Specifically, experimental data from a single combinatorial deposition is utilized to predict the stress-dependent formation of metastable phases based on thermodynamic and ab initio data. Explicit consideration of stress extends the Al solubility limit to higher values for both Ti1-xAlxN and V1-xAlxN thin films, previously unobtainable by energetics, but accessible experimentally. These predictions are experimentally verified and thus provide guidance for experimental efforts with the goal of increasing the Al concentration in fcc-TMAlN thin films. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
17.
  • Nedfors, Nils, et al. (författare)
  • Influence of the Al concentration in Ti-Al-B coatings on microstructure and mechanical properties using combinatorial sputtering from a segmented TiB2/AlB2 target
  • 2019
  • Ingår i: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 364, s. 89-98
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of (TixAl1-x)B2 +y coatings with compositions in the range of x = 0.01-0.94 and y = 1.70-2.92 has been synthesized using magnetron sputtering from a segmented TiB2/AlB2 target. The coatings are amorphous at x amp;lt;= 0.05 while a (TixAl1-x)B2+y solid solution forms for x amp;gt; 0.05. As a consequence of the sputtering process, the B/(Ti + Al) atomic ratio varied with the metal content resulting in the formation of under-stoichiometric coatings at x amp;lt; 0.35 and over-stoichiometric coatings at x amp;gt; 0.35. Surplus Al segregates to grain boundaries of the under-stoichiometric coatings whereas the over-stoichiometric coatings have a tissue phase containing mainly B and some Al. The B-rich tissue phase restrains grain growth in the in-plane direction while an increase in Ti content promotes the growth of columnar structured coatings with a pronounced (001) texture up to x = 0.84. The combination of such preferred orientation and tissue phase results in the highest hardness of 39 GPa for the (Ti0.79Al0.21)B-2.70 coating. The Youngs modulus, on the other hand, increases continuously from 262 GPa for the most Al-rich coating to 478 GPa for the most Ti-rich coating. Comparing to calculated values of Youngs modulus, good agreement is observed for the close to stoichiometric coatings (x = 0.40-0.50). For the off-stoichiometric coatings, the experimental values are lower due to the existence of the tissue phase.
  •  
18.
  • Patterer, Lena, et al. (författare)
  • Effect of Si on the hydrogen-based direct reduction of Fe2O3 studied by XPS of sputter-deposited thin-film model systems
  • 2023
  • Ingår i: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 233
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the effect of gangue elements is of critical importance to optimize the efficiency of hydrogen -based direct reduction (HyDR) of iron ore, as one of the key steps towards climate-neutral steel production. Here, we demonstrate on the example of Si-doped Fe2O3, how thin films can be effectively utilized as a model system to facilitate systematic investigation of the solid-state reduction behavior. In-vacuo X-ray photoelectron spectroscopy (XPS) is used to probe the reduction kinetics by analyzing the chemical state of iron oxide thin films before and after annealing at 700 degrees C in an Ar+5%H2 atmosphere. It is demonstrated that even low Si concen-trations of 3.7 at.% inhibit the HyDR of Fe2O3 by the formation of a SiOx-enriched reduction barrier in the surface-near region.
  •  
19.
  • Rosen, Johanna, et al. (författare)
  • Reducing the impurity incorporation from residual gas by ion bombardment during high vacuum magnetron sputtering
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 88, s. 191905-
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of ion energy on the hydrogen incorporation has been investigated for alumina thin films, deposited by reactive magnetron sputtering in an Ar/O2/H2O environment. Ar+ with an average kinetic energy of ~5 eV was determined to be the dominating species in the plasma. The films were analyzed with x-ray diffraction, x-ray photoelectron spectroscopy, and elastic recoil detection analysis, demonstrating evidence for amorphous films with stoichiometric O/Al ratio. As the substrate bias potential was increased from –15 V (floating potential) to –100 V, the hydrogen content decreased by ~70%, from 9.1 to 2.8 at. %. Based on ab initio calculations, these results may be understood by thermodynamic principles, where a supply of energy enables surface diffusion, H2 formation, and desorption [Rosén et al., J. Phys.: Condens. Matter 17, L137 (2005)]. These findings are of importance for the understanding of the correlation between ion energy and film composition and also show a pathway to reduce impurity incorporation during film growth in a high vacuum ambient.
  •  
20.
  • Thörnberg, Jimmy, et al. (författare)
  • Oxidation resistance and mechanical properties of sputter-deposited Ti0.9Al0.1B2-y thin films
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier Science SA. - 0257-8972 .- 1879-3347. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct-current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS) were used to deposit understoichiometric Ti(1-x)Al(x)B(2-y )diboride coatings by sputtering from a segmented TiB2-AlB2 target using Ar and Kr as sputtering gas. For films with a fixed Al/(Ti + Al) ratio of x = 0.1 (Ti0.9Al0.1B2-y), the B content was varied with y & ISIN; (0.1, 0.6 and 0.7). For films with a fixed y = 0.7 (Ti1-xAlxB1.3), the Al content was varied with x & ISIN; (0.1, 0.4 and 0.7). Evaluation of the mechanical properties of the Ti1-xAlxB1.3 samples showed a reduction in both hardness and elastic modulus with increasing Al concentration, while the Ti0.9Al0.1B2-y samples showed a hardness increase with decreasing B content. Thus, Ti0.9Al0.1B1.3 films exhibited a superior hardness of 46.2 +/- 1.1 GPa and an elastic modulus of 523 & PLUSMN; 7 GPa, compared to the values for Ti0.9Al0.1B1.4 and Ti0.9Al0.1B1.9, showing a hardness of 44 +/- 1 GPa and 36 +/- 1 GPa, and an elastic modulus of 569 +/- 7 GPa and 493 +/- 6 GPa, respectively. The oxidation behavior of the mechanically most promising Ti0.9Al0.1B2-y sample series was investigated through air-annealing at 600 C for durations from 1 h to 10 h. All films formed a mixed non-conformal Al2O3-TiO2 oxide scale which acts as an inward and outward diffusion barrier, significantly reducing the oxidation rate compared to TiBz films, which form an oxide scale consisting of porous TiO2. The thinnest oxide scale after 10 h was found in the B-deficient samples, Ti0.9Al0.1B1.3 and Ti0.9Al0.1B1.4, at ~200 nm, which is significantly below that for Ti0.9Al0.1B1.9 at 320 nm. The enhanced oxidation resistance of highly understoichiometric films is due to the elimination of the B-rich tissue phase that is present at the grain boundaries for higher B content, where the latter has been shown to enhance the rate of oxidation in borides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy