SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller Roeber B.) "

Sökning: WFRF:(Mueller Roeber B.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engqvist, Martin, 1983, et al. (författare)
  • GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast l-Lactate Cytochrome c Oxidoreductase, Supports l-Lactate Oxidation in Roots of Arabidopsis
  • 2015
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 1532-2548 .- 0032-0889. ; 169:2, s. 1042-1061
  • Tidskriftsartikel (refereegranskat)abstract
    • In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-offunction and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia.
  •  
2.
  • Hunt, L, et al. (författare)
  • Phospholipase C is required for the control of stomatal aperture by ABA
  • 2003
  • Ingår i: Plant Journal. - 1365-313X. ; 34:1, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • The calcium-releasing second messenger inositol 1,4,5-trisphosphate is involved in the regulation of stomatal aperture by ABA. In other signalling pathways, inositol 1,4,5-trisphosphate is generated by the action of phospholipase C. We have studied the importance of phospholipase C in guard cell ABA-signalling pathways. Immunolocalisation of a calcium-activated phospholipase C confirmed the presence of phospholipase C in tobacco guard cells. Transgenic tobacco plants with considerably reduced levels of phospholipase C in their guard cells were only partially able to regulate their stomatal apertures in response to ABA. These results suggest that phospholipase C is involved in the amplification of the calcium signal responsible for reductions in stomatal aperture in response to ABA. As full ABA-induced inhibition of stomatal opening was not observed, our results support a role for the action of other calcium-releasing second messengers in the guard cell ABA-signalling pathway. It is not known whether these different calcium-releasing second messengers act in the same or parallel ABA-signalling pathways.
  •  
3.
  • Mueller-Roeber, B, et al. (författare)
  • Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C
  • 2002
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 1532-2548 .- 0032-0889. ; 130:1, s. 22-46
  • Forskningsöversikt (refereegranskat)abstract
    • Phosphoinositides (PIs) constitute a minor fraction of total cellular lipids in all eukaryotic cells. They fulfill many important functions through interaction with a wide range of cellular proteins. Members of distinct inositol lipid kinase families catalyze the synthesis of these phospholipids from phosphatidylinositol. The hydrolysis of PIs involves phosphatases and isoforms of PI-specific phospholipase C. Although our knowledge of the roles played by plant PIs is clearly limited at present, there is no doubt that they are involved in many physiological processes during plant growth and development. In this review, we concentrate on inositol lipid-metabolizing enzymes from the model plant Arabidopsis for which biochemical characterization data are available, namely the inositol lipid kinases and PI-specific phospholipase Cs. The biochemical properties and structure of characterized and genome-predicted isoforms are presented and compared with those of the animal enzymes to show that the plant enzymes have some features clearly unique to this kingdom.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy