SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muhammad Ghulam) "

Sökning: WFRF:(Muhammad Ghulam)

  • Resultat 1-45 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
3.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
4.
  • Abdal, Noman, et al. (författare)
  • Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress : implications for phytoremediation
  • 2023
  • Ingår i: Environmental Geochemistry and Health. - : Springer Science and Business Media LLC. - 0269-4042 .- 1573-2983. ; 45:1, s. 171-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Cadmium (Cd) contamination and soil salinity are the main environmental issues reducing crop productivity. This study aimed to examine the combined effects of salinity (NaCl) and Cd on the physiological and biochemical attributes of quinoa (Chenopodium quinoa Willd.). For this purpose, 30-day-old plants of quinoa genotype “Puno” were transplanted in Hoagland's nutrient solution containing diverse concentrations of Cd: 0, 50, 100, 200 µM Cd, and salinity: 0, 150, and 300 mM NaCl. Results demonstrated that plant growth, stomatal conductance, and pigment contents were significantly lower at all Cd concentrations than the control plants. Quinoa plants exhibited improved growth and tolerance against Cd when grown at a lower level of salinity (150 mM NaCl) combined with Cd. In contrast, the elevated concentration of salinity (300 mM NaCl) combined with Cd reduced shoot and root growth of experimental plants more than 50%. Combined application of salinity and Cd increased Na (25-fold), while lessened the Cd (twofold) and K (1.5-fold) uptake. A blend of high concentrations of Na and Cd caused overproduction of H2O2 (eightfold higher than control) contents and triggered lipid peroxidation. The activities of antioxidant enzymes: ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were 13, 12, 7 and ninefold higher than control to mitigate the oxidative stress. Due to restricted root to shoot translocation, and greater tolerance potential against Cd, the quinoa genotype, Puno, is suitable for phytostabilization of Cd in saline soils.
  •  
5.
  • Ashraf, Waqar Muhammad, et al. (författare)
  • Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
  • 2022
  • Ingår i: Alexandria Engineering Journal. - 1110-0168 .- 2090-2670. ; 61:3, s. 1864-1880
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM) based relative vibration modeling of a steam turbine shaft bearing of a 660 MW supercritical steam turbine system is presented. After extensive data processing and machine learning based visualization tests performed on the raw operational data, ANN and SVM models are trained, validated and compared by external validation tests. ANN has outperformed SVM in terms of better prediction capability and is, therefore, deployed for simulating the constructed operating scenarios. ANN process model is tested for the complete load range of power plant, i.e., from 353 MW to 662 MW and 4.07% reduction in the relative vibration of the bearing is predicted by the network. Further, various vibration reduction operating strategies are developed and tested on the validated and robust ANN process model. A selected operating strategy which has predicted a promising reduction in the relative vibration of bearing is selected. In order to confirm the effectiveness of the prediction of the ANN process model, the selected operating strategy is implemented on the actual operation of the power plant. The resulting reduction in the relative vibrations of the turbine's bearing, which is less than the alarm limit, are confirmed. This cements the role of ANN process model to be used as an operational excellence tool resulting in vibration reduction of high-speed rotating equipment. (c) 2021 THE AUTHORS. Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
6.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
7.
  • Afroz, Laila, et al. (författare)
  • Nanocomposite Catalyst (1 – x)NiO-xCuO/yGDC for Biogas Fueled Solid Oxide Fuel Cells
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:21, s. 10918-10928
  • Tidskriftsartikel (refereegranskat)abstract
    • The composites of Ni–Cu oxides with gadolinium doped ceria (GDC) are emerging as highly proficient anode catalysts, owing to their remarkable performance for solid oxide fuel cells operated with biogas. In this context, the nanocomposite catalysts (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3) are synthesized using a solid-state reaction route. The cubic and monoclinic structures are observed for NiO and CuO phases, respectively, while CeO2 showed cubic fluorite structure. The scanning electron microscopic images revealed a rise in the particle size with an increase in the copper and GDC concentration. The optical band gap values are calculated in the range 2.82–2.33 eV from UV–visible analysis. The Raman spectra confirmed the presence of vibration modes of CeO2 and NiO. The electrical conductivity of the nanocomposite anodes is increased as the concentration of copper and GDC increased and reached at 9.48 S cm–1 for 0.2NiO-0.8CuO/1.3GDC composition at 650 °C. The electrochemical performance of (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3)-based fuel cells is investigated with biogas fuel at 650 °C. Among all of the as-synthesized anodes, the fuel cell with composition 0.2NiO-0.8CuO/1.3GDC showed the best performance, such as an open circuit voltage of 0.84 V and peak power density of 72 mW cm–2. However, from these findings, it can be inferred that among all other compositions, the 0.2NiO-0.8CuO/1.3GDC anode is a superior combination for the high electrochemical performance of solid oxide fuel cells fueled with biogas.
  •  
8.
  • Alay-e-Abbas, Syed Muhammad, 1983-, et al. (författare)
  • Structure inversion asymmetry enhanced electronic structure and electrical transport in 2D A3SnO (A = Ca, Sr, and Ba) anti-perovskite monolayers
  • 2023
  • Ingår i: Nano Reseach. - : Springer Nature. - 1998-0124 .- 1998-0000. ; 16:1, s. 1779-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-perovskites A3SnO (A = Ca, Sr, and Ba) are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry, spin-orbit coupling, and band overlap. This provides an exciting playground for modulating their electronic properties in the two-dimensional (2D) limit. Herein, we employ first-principles density functional theory (DFT) calculations by combining dispersion-corrected SCAN + rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural, thermodynamic, dynamical, mechanical, electronic, and thermoelectric properties of bulk and monolayer (one unit cell thick) A3SnO anti-perovskites. Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable. Moreover, Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin-orbit coupling and inversion asymmetry. On the other hand, monolayer Ba3SnO exhibits Dirac cone at the high-symmetry Γ point due to the domination of band overlap. Based on the predicted electronic transport properties, it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.
  •  
9.
  • Ali, Kiran, et al. (författare)
  • Rapid Identification of Common Secondary Metabolites of Medicinal Herbs Using High-Performance Liquid Chromatography with Evaporative Light Scattering Detector in Extracts
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery and identification of novel natural products of medicinal importance in the herbal medicine industry becomes a challenge. The complexity of this process can be reduced by dereplication strategies. The current study includes a method based on high-performance liquid chromatography (HPLC), using the evaporative light scattering detector (ELSD) to identify the 12 most common secondary metabolites in plant extracts. Twelve compounds including rutin, taxifolin, quercetin, apigenin, kaempferol, betulinic acid, oleanolic acid, betulin, lupeol, stigmasterol, and beta-sitosterol were analyzed simultaneously. The polarity of the compounds varied greatly from highly polar (flavonoids) to non-polar (triterpenes and sterols). This method was also tested for HPLC-DAD and HPLC-ESI-MS/MS analysis. Oleanolic acid and ursolic acid could not be separated in HPLC-ELSD analysis but were differentiated using LC-ESI-MS/MS analysis due to different fragment ions. The regression values (R-2 > 0.996) showed good linearity in the range of 50-1000 mu g/mL for all compounds. The range of LOD and LOQ values were 7.76-38.30 mu g/mL and 23.52-116.06 mu g/mL, respectively. %RSD and % trueness values of inter and intraday studies were mostly <10%. This method was applied on 10 species of medicinal plants. The dereplication strategy has the potential to facilitate and shorten the identification process of common secondary metabolites in complex plant extracts.
  •  
10.
  • Bilal, Muhammad, et al. (författare)
  • DFT insights into surface properties of anti-perovskite 3D topological crystalline insulators : A case study of (001) surfaces of Ca3SnO
  • 2021
  • Ingår i: Physics Letters A. - : Elsevier. - 0375-9601 .- 1873-2429. ; 408
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter density functional theory calculations are used for investigating the structural, energetic and electronic properties of CaSn- and Ca2O-terminated (001) surfaces of anti-perovskite Ca3SnO. Our calculations indicate larger structural changes in case of the CaSn-terminated (001) surface of Ca3SnO, however, both CaSn- and Ca2O-terminated surfaces of Ca3SnO are found to be energetically stable. The electronic properties of (001) surfaces of Ca3SnO are examined by taking spin-orbit coupling into account. Comparison of the simulated results of electronic properties for the two (001) surfaces of Ca3SnO with experimentally reported hole carrier densities observed in p-type polycrystalline samples show good agreement.
  •  
11.
  •  
12.
  •  
13.
  • Muhammad, Zahir, et al. (författare)
  • Temperature Modulating Fermi Level Pinning in 2D GeSe for High‐Performance Transistor
  • 2022
  • Ingår i: Advanced Electronic Materials. - : John Wiley & Sons. - 2199-160X. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D layered germanium selenide (GeSe) material possesses in-plane anisotropy because of low-symmetry crystal structure with a new degree of freedom for enhanced optical and electronic properties. However, their systematic vibrational and electronics properties are still under the scope to study. Herein, the vibrational properties of GeSe sheets are studied by Raman spectroscopy. Whereas, the temperature-dependent electronic band structure is studied using angle-resolved photoemission spectroscopy (ARPES) combined with density functional theory calculations. Moreover, the field-effect transistor (FET) is fabricated on a few-layer GeSe with high performance. The vibrational modes (Formula presented.) and (Formula presented.) demonstrates linear softening as the temperature increases, with temperature coefficient value associated by anharmonic phonon–phonon/electron coupling. Besides, the enhanced dielectric screening effect of long-range Coulomb and interlayer interaction is observed from bulk to monolayer. Similarly, ARPES results further show Fermi level movement toward the valance band as increased temperature represents hole doping to pining the Fermi level, which indicates superior carrier concentration for electronic properties. The fabricated FET device on six layers GeSe exhibits high carrier mobility of 52.89 cm2 V−1 s−1 with an on/off ratio above 4 × 105 at room temperature, while it decreased below the room temperature. Our results provide the important figure of merit for GeSe-based novel nanoelectronic and thermoelectric devices.
  •  
14.
  • Nisa, Zaib Un, et al. (författare)
  • A comparative metabolomic study on desi and kabuli chickpea (Cicer arietinum L.) genotypes under rainfed and irrigated field conditions
  • 2020
  • Ingår i: Scientific Reports. - BERLIN GERMANY : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Chickpea is considered among the most important leguminous crops in the world. However, in recent years drought conditions and/or limited availability of water have significantly reduced the production of chickpea. The current study was aimed to understand the legume stress response at the metabolic level for the determination of chickpea genotypes which can resist yield losses and could be cultivated with limited water availability. Here, we have analyzed two genotypes of chickpea, desi and kabuli under rainfed condition using a GC-MS based untargeted metabolomics approach. Results revealed significant differences in several metabolite features including oxalic acid, threonic acid, inositol, maltose and L-proline between studied groups. Accumulation of plant osmoprotectants such as L-proline, sugars and sugar alcohols was higher in desi genotype than kabuli genotype of chickpea when grown under the rainfed condition. Metabolic pathway analysis suggests that the inositol phosphate metabolism was involved in plant defense mechanisms against the limited water availability.
  •  
15.
  • Rahman, Saeedur, et al. (författare)
  • Combining untargeted and targeted metabolomics approaches for the standardization of polyherbal formulations through UPLC-MS/MS
  • 2019
  • Ingår i: Metabolomics. - : SPRINGER. - 1573-3882 .- 1573-3890. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Polyherbal formulations are an integral part of various indigenous medicinal systems such as Traditional Chinese Medicine (TCM) and Ayurveda. The presence of a very large number of compounds makes the quality control of polyherbal formulations very difficult. Objectives To overcome this problem, we have developed a comprehensive strategy for the dereplication of natural products in polyherbal formulations by using Adhatoda vasica as a case study. Methods The strategy is based on five major steps: the collection of plant samples from different locations to observe the effects of environmental variables; LC-ESI-MS/MS-based untargeted metabolite profiling of the plant samples to identify marker compounds using extensive chemometric analysis of the obtained data; the identification of marker compounds in polyherbal products; the isolation, purification and characterization of the marker compounds; and MRM-based quantitative analysis of the isolated marker compounds using LC-ESI-MS/MS. Results Using this strategy, we identified a total of 51 compounds in the methanolic extract of A. vasica plants from 14 accessions. Chemical fingerprinting of the plant led to the identification of characteristic peaks that were used to confirm the presence of A. vasica in complex polyherbal formulations. Four quinazoline alkaloids (marker compounds) were isolated, purified and quantified in various herbal formulations containing A. vasica. Conclusion This method demonstrates a comprehensive strategy based on untargeted and targeted metabolite analysis that can be used for the standardization of complex polyherbal formulations.
  •  
16.
  • Tehreem, Syeda, et al. (författare)
  • A UPLC-DAD-Based Bio-Screening Assay for the Evaluation of the Angiotensin Converting Enzyme Inhibitory Potential of Plant Extracts and Compounds : Pyrroquinazoline Alkaloids from Adhatoda vasica as a Case Study
  • 2021
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 26:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin converting enzyme (ACE) plays a crucial role in regulating blood pressure in the human body. Identification of potential ACE inhibitors from medicinal plants supported the idea of repurposing these medicinal plants against hypertension. A method based on ultra-performance liquid chromatography (UPLC) coupled with a diode array detector (DAD) was used for the rapid screening of plant extracts and purified compounds to determine their ACE inhibitory activity. Hippuryl-histidiyl-leucine (HHL) was used as a substrate, which is converted into hippuric acid (HA) by the action of ACE. A calibration curve of the substrate HHL was developed with the linear regression 0.999. The limits of detection and quantification of this method were found to be 0.134 and 0.4061 mM, respectively. Different parameters of ACE inhibitory assay were optimized, including concentration, incubation time and temperature. The ACE inhibition potential of Adhatoda vasica (methanolic-aqueous extract) and its isolated pyrroquinazoline alkaloids, vasicinol (1), vasicine (2) and vasicinone (3) was evaluated. Compounds 1-3 were characterized by various spectroscopic techniques. The IC50 values of vasicinol (1), vasicine (2) and vasicinone (3) were found to be 6.45, 2.60 and 13.49 mM, respectively. Molecular docking studies of compounds 1-3 were also performed. Among these compounds, vasicinol (1) binds as effectively as captopril, a standard drug of ACE inhibition.
  •  
17.
  • Ul Haq, Faraz, et al. (författare)
  • Metabolite Profiling and Quantitation of Cucurbitacins in Cucurbitaceae Plants by Liquid Chromatography coupled to Tandem Mass Spectrometry
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cucurbitaceae is an important plant family because many of its species are consumed as food, and used in herbal medicines, cosmetics, etc. It comprises annual vines and is rich in various bioactive principles which include the cucurbitacins. These steroidal natural products, derived from the triterpene cucurbitane, are mainly the bitter principles of the family Cucurbitaceae. Their biological activities include anti-inflammatory, hepatoprotective, and anti-cancer activities. A total of 10 species belonging to 6 genera of the Cucurbitaceae family along with Cissampelos pareira (Menispermaceae) were included in this study. A comprehensive profiling of certain natural products was developed using HPLC-QTOF-MS/MS analysis and a distribution profile of several major natural products in this family was obtained. A total of 51 natural products were detected in both positive and negative ionization modes, based on accurate masses and fragmentation patterns. Along with this, quantitation of four bioactive cucurbitacins, found in various important plants of the Cucurbitaceae family, was carried out using multiple reaction monitoring (MRM) approach on an ion trap mass spectrometer. Cucurbitacin Q was found to be the most abundant in C. pareira, while Citrullus colocynthis contained all four cucurbitacins in abundant quantities. The developed quantitation method is simple, rapid, and reproducible.
  •  
18.
  • Abbas, Ghulam, et al. (författare)
  • Quasi Three-Dimensional Tetragonal SiC Polymorphs as Efficient Anodes for Sodium-Ion Batteries
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:17, s. 8976-8988
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, we investigate, for the first time, quasi 3D porous tetragonal silicon–carbon polymorphs t(SiC)12 and t(SiC)20 on the basis of first-principles density functional theory calculations. The structural design of these q3-t(SiC)12 and q3-t(SiC)20 polymorphs follows an intuitive rational approach based on armchair nanotubes of a tetragonal SiC monolayer where C–C and Si–Si bonds are arranged in a paired configuration for retaining a 1:1 ratio of the two elements. Our calculations uncover that q3-t(SiC)12 and q3-t(SiC)20 polymorphs are thermally, dynamically, and mechanically stable with this lattice framework. The results demonstrate that the smaller polymorph q3-t(SiC)12 shows a small band gap (∼0.59 eV), while the larger polymorph of q3-t(SiC)20 displays a Dirac nodal line semimetal. Moreover, the 1D channels are favorable for accommodating Na ions with excellent (>300 mAh g–1) reversible theoretical capacities. Thus confirming potential suitability of the two porous polymorphs with an appropriate average voltage and vanishingly small volume change (<6%) as anodes for Na-ion batteries.
  •  
19.
  • Ahmed, Shahbaz, et al. (författare)
  • Accurate First-Principles Evaluation of Structural, Electronic, Optical and Photocatalytic Properties of BaHfO3 and SrHfO3 Perovskites
  • 2022
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 892
  • Tidskriftsartikel (refereegranskat)abstract
    • A reliable first-principles account of experimentally observed physical properties of perovskite oxides is crucial for realizing their employment in electronic and optical devices. In this context, SCAN meta-GGA functional of DFT offers good approximation for the exchange-correlation energy; facilitating accurate determination of structural and energetic properties. However, SCAN is unable to reproduce electronic and optical properties of wide bad gap materials. In the present study, we report systematic DFT calculations to show that structural, energetic, electronic and optical properties of hafnium based BaHfO3 and SrHfO3 perovskite oxides can be accurately determined through a combine application of SCAN and Tran-Blaha modified Becke-Johnson (TB-mBJ) meta-GGAs. The structural and energetic properties computed using SCAN functional for both BaHfO3 and SrHfO3 are found to be in good agreement with experimental data; achieving a level of accuracy comparable to computationally expansive hybrid DFT calculations. On the other hand, TB-mBJ calculated band gaps computed using the SCAN optimized lattice parameters provide better agreement with experimental data at a low computational cost. The optical properties, band edge potentials and effective masses of the charge carriers in BaHfO3 and SrHfO3 are also computed to examine the combined application of SCAN and TB-mBJ meta-GGAs in predicting the photocatalytic performance of these wide band gap materials. Our results clearly show that the combination of the two meta-GGAs provide a computationally economical route for evaluating the photocatalytic performance of alkaline-earth metal hafnates.
  •  
20.
  • Aslam, Marryam, et al. (författare)
  • Physical characteristics of CdZrO3 perovskite at different pressure for optoelectronic application
  • 2020
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854. ; 9:5, s. 9965-9971
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive investigation of the physical characteristics of any material provides beneficial information regarding its application viewpoint in different industries. Herein, we report the tunable mechanical and optoelectronic properties of cubic CdZrO3 under variable pressure up to 80 GPa using density functional theory (DFT). The pressure-induced band gap engineering reveals a fantastic fact of transformation of the indirect to direct band gap with increasing pressure. The dielectric response disclosed that optical parameters dragged towards higher energy with an increase of pressure, which unveiled the potential of CdZrO3 for optoelectronic applications. Effective change in optoelectronic is attributed to indirect to direct band gap transition. This study provides a gateway to how the optoelectronic properties of cubic CdZrO3 could be tuned by employing external pressure.
  •  
21.
  • Azhar, Muhammad Rizwan, et al. (författare)
  • Electrodeposited Metal Organic Framework toward Excellent Hydrogen Sensing in an Ionic Liquid
  • 2020
  • Ingår i: ACS APPLIED NANO MATERIALS. - : American Chemical Society (ACS). - 2574-0970. ; 3:5, s. 4376-4385
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of thin films of metal organic frame-works (MOFs) is a rapidly growing area owing to the use of these highly functional nanomaterials for various applications. In this study, a thin layer of a typical MOF, copper benzene tricarboxylate (HKUST-1), was synthesized by electrodeposition on a glassy carbon (GC) electrode using a potential-step chronoamperometric technique at room temperature. Various characterization techniques including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the successful deposition of the MOF film and its structure. The electrodeposited MOF crystals showed cuboctahedral morphology with macropores. The MOF modified electrode was applied for hydrogen gas sensing in a room-temperature ionic liquid (RTIL) for the first time. A 4-fold increase in current was observed compared to a precious metal, that is, platinum, and the electrode exhibited a significant catalytic activity compared to the bare GC electrode, making it a very promising low cost material for hydrogen gas sensing.
  •  
22.
  • Aziz, Nudrat, et al. (författare)
  • Erythroid induction activity of Aquilegia fragrans and Aquilegia pubiflora and identification of compounds using liquid chromatography-tandem mass spectrometry
  • 2021
  • Ingår i: JOURNAL OF KING SAUD UNIVERSITY SCIENCE. - : Elsevier. - 1018-3647 .- 2213-686X. ; 33:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquilegia fragrans (AF) and Aquilegia pubiflora (AP) are the two medicinally important species of genus Aquilegia used for the treatment of various diseases and infections. This paper describes the potential of fetal hemoglobin induction activity of the methanolic extracts of AF and AP in K562 cell line. AF and AP have shown 27.147 +/- 1.376 and 32.786 +/- 1.048 percent erythroid induction, respectively at 15.625 (mg/mL) concentration which suggested that both plants can be the source of potential fetal hemoglobin inducers and may be used for the treatment of beta-thalassemia. Phytochemical analyses of both species were also evaluated by using high-resolution LC-ESI-QTOF-MS/MS techniques. A Total of thirty compounds were identified using positive and negative ionization modes. The identification was based on the matching of high-resolution masses, isotopic pattern, and MS/MS fragmentation. Several statistical analyses were performed to evaluate the distribution of compounds in both species. Identified compounds belong to various classes including flavonoids, steroids, lignans, terpenoids, benzofuran and coumarins. The established chemical fingerprints will be helpful in standardization and quality control of plant extracts.
  •  
23.
  • Bhatti, Muhammad Salman, et al. (författare)
  • Repurposing of pharmaceutical drugs by high-throughput approach for antihypertensive activity as inhibitors of angiotensin-converting enzyme (ACE) using HPLC-ESI-MS/MS method
  • 2021
  • Ingår i: Arabian Journal of Chemistry. - : Elsevier. - 1878-5352 .- 1878-5379. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin-converting enzyme (ACE) plays an important role in regulating blood pressure in the body by converting angiotensin-I into angiotensin-II. It is the basic component of Renin angiotensin aldosterone system (RAAS), imbalance of RAAS may leads to many cardiovascular and renal diseases. There are many marketed available drugs for the inhibition of ACE, but prolonged use of some drugs may cause the progressive side effects. Repurposing of existing drugs can be a way to find new inhibitors of ACE. In this study, a high-throughput and sensitive method of HPLC-ESI-QqQ-MS with good reproducibility (%RSD < 9.98) and linearity (R-2 = 0.999) was used to investigate the 77 commercial drugs for their inhibitory potential as antihypertensive drugs. Among these drugs, 41 drugs were found active and 36 of them showed moderate to good inhibition with lowest IC50 = 272 mu M. This study showed that different pharmaceutical drugs can also be used as ACE inhibitor after necessary clinical trials or validation.
  •  
24.
  • Ghulam, Muhammad, et al. (författare)
  • Enhanced Living by Assessing Voice Pathology Using a Co-Occurrence Matrix
  • 2017
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • large number of the population around the world suffers from various disabilities. Disabilities affect not only children but also adults of different professions. Smart technology can assist the disabled population and lead to a comfortable life in an enhanced living environment (ELE). In this paper, we propose an effective voice pathology assessment system that works in a smart home framework. The proposed system takes input from various sensors, and processes the acquired voice signals and electroglottography (EGG) signals. Co-occurrence matrices in different directions and neighborhoods from the spectrograms of these signals were obtained. Several features such as energy, entropy, contrast, and homogeneity from these matrices were calculated and fed into a Gaussian mixture model-based classifier. Experiments were performed with a publicly available database, namely, the Saarbrucken voice database. The results demonstrate the feasibility of the proposed system in light of its high accuracy and speed. The proposed system can be extended to assess other disabilities in an ELE.
  •  
25.
  • Jannu, Srikanth, et al. (författare)
  • Energy Efficient Quantum-Informed Ant Colony Optimization Algorithms for Industrial Internet of Things
  • 2024
  • Ingår i: IEEE Transactions on Artificial Intelligence. - Piscataway : IEEE. - 2691-4581. ; 5:3, s. 1077-1086
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most prominent research areas in information technology is the Internet of things (IoT) as its applications are widely used such as structural monitoring, health care management systems, agriculture and battlefield management, and so on. Due to its self-organizing network and simple installation of the network, the researchers have been attracted to pursue research in the various fields of IoTs. However, a huge amount of work has been addressed on various problems confronted by IoT. The nodes densely deploy over critical environments and those are operated on tiny batteries. Moreover, the replacement of dead batteries in the nodes is almost impractical. Therefore, the problem of energy preservation and maximization of IoT networks has become the most prominent research area. However, numerous state-of-the-art algorithms have addressed this issue. Thus, it has become necessary to gather the information and send it to the base station in an optimized method to maximize the network. Therefore, we propose a novel quantum-informed ant colony optimization (ACO) routing algorithm with the efficient encoding scheme of cluster head selection and derivation of information heuristic factors. The algorithm has been tested by simulation for various network scenarios. The simulation results of the proposed algorithm show its efficacy over a few existing evolutionary algorithms using various performance metrics such as residual energy of the network, network lifetime, and the number of live IoT nodes. © 2022 IEEE
  •  
26.
  • Kumari, Sindhia, et al. (författare)
  • Metabolomics approach to understand the hepatitis C virus induced hepatocellular carcinoma using LC-ESI-MS/MS
  • 2021
  • Ingår i: Arabian Journal of Chemistry. - : Elsevier. - 1878-5352 .- 1878-5379. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is a typical cancer that has region specified analysis with the incidence of hepatitis C virus (HCV) infection. This study was conducted to improve the understanding of metabolic alterations associated with HCV induced HCC which can open up new strategies to monitor the high risk of HCC. Samples of the subjects with HCV, HCV induced chronic liver disease (CLD), HCV induced HCC, and healthy controls (HS) were collected after complete blood count (CBC), hepatitis viral load, st-fetoprotein (AFP), liver function tests, and albumin. A total of 147 serum samples including HCC (n = 11), CLD (n = 24), HCV (n = 71), and HS (n = 41) were analyzed by LC-ESI-MS/MS. The 21 compounds were found to be responsible for group discrimination after the application of chemometric tools. Nfructosyl tyrosine and hydroxyindoleacetic acid showed an increase in level whereas L-aspartylL-phenylalanine and thyroxine showed a consistent decrease in the progression of HCV to HCC in comparison with HS indicating their importance for early detection. The biological pathways such as glycerophospholipid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism and tryptophan metabolism showed alteration in some metabolites. The method was internally validated by ROC plot showing AUC value for HS, HCV, CLD, and HCC as 0.99, 1, 1, and 0.89, respectively; while 16 blind samples were also validated with 93% specificity. The untargeted metabolomics investigation of HCV, CLD, and HCC can help to understand the progression of HCV-induced HCC. It reveals significant differences in metabolites to predict prognostic and diagnostic markers. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
  •  
27.
  • Mugheri, Abdul Qayoom, et al. (författare)
  • Chemically Coupled Cobalt Oxide Nanosheets Decorated onto the Surface of Multiwall Carbon Nanotubes for Favorable Oxygen Evolution Reaction
  • 2021
  • Ingår i: Journal of Nanoscience and Nanotechnology. - : AMER SCIENTIFIC PUBLISHERS. - 1533-4880 .- 1533-4899. ; 21:4, s. 2660-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • Cobalt oxide has been widely investigated among potential transition metal oxides for the electrochemical energy conversion, storage, and water splitting. However, they have inherently low electronic conductivity and high corrosive nature in alkaline media. Herein, we propose a promising and facile approach to improve the conductivity and charge transport of cobalt oxide Co3O4 through chemical coupling with well-dispersed multiwall carbon nanotubes (MWCNTs) during hydrothermal treatment. The morphology of prepared composite material consisting of nanosheets which are anchored on the MWCNTs as confirmed by scanning electron microscopy (SEM). A cubic crystalline system is exhibited by the cobalt oxide as confirmed by the X-ray diffraction study. The Co, O, and C are the only elements present in the composite material. FTIR study has indicated the successful coupling of cobalt oxide with MWCNTs. The chemically coupled cobalt oxide onto the surface of MWCNTs composite is found highly active towards oxygen evolution reaction (OER) with a low onset potential 1.44 V versus RHE, low overpotential 262 mV at 10 mAcm(-2) and small Tafel slope 81 mV dec(-1). For continuous operation of 40 hours during durability test, no decay in activity was recorded. Electrochemical impedance study further revealed a low charge transfer resistance of 70.64 Ohms for the composite material during the electrochemical reaction and which strongly favored OER kinetics. This work provides a simple, low cost, and smartly designing electrocatalysts via hydrothermal reaction for the catalysis and energy storage applications.
  •  
28.
  • Muhammad, Zahir, et al. (författare)
  • Anisotropic phonon and magnon vibration and gate-tunable optoelectronic properties of nickel thiophosphite
  • 2023
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal phosphorus trichalcogenides retain spin-charge coupling and lattice vibrations in different layers, which are useful for spintronic and optoelectronic devices. The phonon, magnons and excitonic properties of two-dimensional ternary nickel-phosphorus trisulfides (NiPS3) are investigated using Raman spectroscopy and photoluminescence (PL) study. With magnetic exchange interaction, an exotic phonon scattering degenerates the optical phonons into in-plane Ag and Bg modes. We have observed eight Raman modes with two acoustic anisotropic magnon modes (M1, M2) below the critical temperature for co-(XX), while only M1 at cross (XY) polarizations. The M1 mode is coupled with the phonon Bg mode that can survive after transition temperature. The phonon and magnon modes soften with variations in temperature, which is attributed to anharmonic phonon–phonon coupling and interlayer forces. The polarized Raman shows the two-fold and four-fold symmetry orientations of the phonon and magnon modes, respectively, which exhibit strong in-plane anisotropic phonon/magnon. The PL spectra revealed the existence of bound excitonic features and ensemble emitters in NiPS3. The robust interlayer excitation and structural stability further revealed the optothermal properties. Moreover, the fabricated field-effect transistor on NiPS3 reveals p-type semiconducting nature with an ON/OFF ratio of 5 × 106 and mobility of ∼16.34 cm2 V−1 s−1. In contrast, the rectification ratio indicates their diode characteristics. Similarly, the photocurrent is enhanced by changing the wavelength of light, which shows the potential for optoelectronics. The strong spin-charge interaction provides new insights into these materials’ magneto-optical and thermal properties for memory devices.
  •  
29.
  • Mustafa, Ghulam M., et al. (författare)
  • Study of optoelectronic and transport properties of MgLu2Z4 (Z=S, Se) spinels for optoelectronic and energy harvesting applications
  • 2021
  • Ingår i: Materials Science in Semiconductor Processing. - : Elsevier. - 1369-8001 .- 1873-4081. ; 121
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense research has been done to build materials that are potential candidates for energy storage applications. Spinels are of great interest in this respect because they have vast potential to be used in Mg-based batteries. To explore their energy storage as well as transport response, we calculate Mg-based spinels, namely MgLu2Z4 (ZS, Se). The full potential linearized augmented plane wave method has been used to examine their optoelectronic and transport response. An increase in the lattice constant has been observed by replacing S with Se, and our calculated values are in good agreement with those obtained experimentally. The Tran-Blaha modified Becke-Johnson exchange potential (TB-mBJ), has been used to study the optoelectronic and thermoelectric characteristics of the respective spinels. The dependence of these properties on the bandgap has also been observed. Replacing S with Se resulted in the transformation of the electronic bandgap from near-infrared to the visible region (MgLu2S4: 2.60 eV and MgLu2Se4: 2.00 eV). These results showed that these materials have the potential to be used in optoelectronic devices. The optical properties are discussed as a function of energy. Besides, the thermal transports are discussed with the help of Seebeck coefficient and figure of merit as a function of chemical potential and temperature.
  •  
30.
  • Qu, Zhiguo, et al. (författare)
  • Privacy protection in intelligent vehicle networking : A novel federated learning algorithm based on information fusion
  • 2023
  • Ingår i: Information Fusion. - Amsterdam : Elsevier. - 1566-2535 .- 1872-6305. ; 98
  • Tidskriftsartikel (refereegranskat)abstract
    • Federated learning is an effective technique to solve the problem of information fusion and information sharing in intelligent vehicle networking. However, most of the existing federated learning algorithms generally have the risk of privacy leakage. To address this security risk, this paper proposes a novel personalized federated learning with privacy preservation (PDP-PFL) algorithm based on information fusion. In the first stage of its execution, the new algorithm achieves personalized privacy protection by grading users’ privacy based on their privacy preferences and adding noise that satisfies their privacy preferences. In the second stage of its execution, PDP-PFL performs collaborative training of deep models among different in-vehicle terminals for personalized learning, using a lightweight dynamic convolutional network architecture without sharing the local data of each terminal. Instead of sharing all the parameters of the model as in standard federated learning, PDP-PFL keeps the last layer local, thus adding another layer of data confidentiality and making it difficult for the adversary to infer the image of the target vehicle terminal. It trains a personalized model for each vehicle terminal by “local fine-tuning”. Based on experiments, it is shown that the accuracy of the proposed new algorithm for PDP-PFL calculation can be comparable to or better than that of the FedAvg algorithm and the FedBN algorithm, while further enhancing the protection of data privacy. © 2023 Elsevier B.V.
  •  
31.
  • Qu, Zhiguo, et al. (författare)
  • QB-IMD : A secure medical data processing system with privacy protection based on quantum blockchain for IoMT
  • 2024
  • Ingår i: IEEE Internet of Things Journal. - Piscataway, NJ : Institute of Electrical and Electronics Engineers (IEEE). - 2327-4662. ; 11:1, s. 40-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Security and privacy are issues that cannot be ignored when collecting and processing medical data in the Internet of Medical Things (IoMT). Blockchain technology is a decentralized ledger system that has diverse application scenarios in the medical field. Blockchain technology relies on traditional cryptography to ensure data integrity and verifiability, but the creation of quantum computing has made it possible to break traditional encryption and signature methods. Therefore, quantum blockchain can provide a higher level of security for handling medical data. This paper innovatively designs a new medical data processing system based on quantum blockchain (QB-IMD). In QB-IMD, a quantum blockchain structure and a novel electronic medical record algorithm (QEMR) are proposed to ensure that the processed data is legitimate and tamper-proof. QEMR combines quantum signature and quantum identity authentication to avoid the potential security risks of digital signatures. In addition, through delegated computing by quantum cloud, medical diagnostic data can be computed without leaking to quantum cloud servers, thus protecting user privacy. Through mathematical proof, theoretical analysis and simulation, it is demonstrated that our scheme can resist six attacks and is feasible to protect user privacy. © IEEE
  •  
32.
  • Qu, Zhiguo, et al. (författare)
  • QMFND : A quantum multimodal fusion-based fake news detection model for social media
  • 2024
  • Ingår i: Information Fusion. - Amsterdam : Elsevier. - 1566-2535 .- 1872-6305. ; 104
  • Tidskriftsartikel (refereegranskat)abstract
    • Fake news is frequently disseminated through social media, which significantly impacts public perception and individual decision-making. Accurate identification of fake news on social media is usually time-consuming, laborious, and difficult. Although the leveraging of machine learning technologies can facilitate automated authenticity checks, the time-sensitive and voluminous nature of the data brings considerable challenge for fake news detection. To address this issue, this paper proposes a quantum multimodal fusion-based model for fake news detection (QMFND). QMFND integrates the extracted images and textual features, and passes them through a proposed quantum convolutional neural network (QCNN) to obtain discriminative results. By testing QMFND on two social media datasets, Gossip and Politifact, it is proved that its detection performance is equal to or even surpasses that of classical models. The effects of various parameters are further investigated. The QCNN not only has good expressibility and entangling capability but also has good robustness against quantum noise. The code is available at © 2023 Elsevier B.V.
  •  
33.
  • Rehan, Mohammad, et al. (författare)
  • Waste to Energy : A Case Study of Madinah City
  • 2017
  • Ingår i: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY. - Amsterdam : Elsevier. ; 142, s. 688-693
  • Konferensbidrag (refereegranskat)abstract
    • The concept of energy from waste is getting popular nowadays across the globe, as being capable of producing multi fuels and value-added products from different fractions of municipal solid waste (MSW). The energy recovery technologies under this concept are anaerobic digestion (AD), pyrolysis, transesterification, refuse derived fuel (RDF) and incineration. This concept is very relevant to implementation in countries like Saudi Arabia, who wants to cut their dependence on oil. Moreover, the waste to energy becomes the imperative need of the time because of new governmental policy 'Vision 2030' that firmly said to produce renewable energy from indigenous sources of waste, wind and solar and due to given situations of Hajj and Umrah with massive amounts of waste generation in a short period. This study focused on two waste to energy technologies, AD and pyrolysis for food (40% of MSW) and plastic (20% of MSW) waste streams respectively. The energy potential of 1409.63 and 5619.80 TJ can be produced if all of the food and plastic waste of the Madinah city are processed through AD and pyrolysis respectively. This is equivalent to 15.64 and 58.81 MW from biogas and pyrolytic oil respectively or total 74.45 MW of continuous electricity supply in Madinah city throughout the whole year. It has been estimated that the development of AD and pyrolysis technologies will also benefit the economy with net savings of around US $63.51 and US $53.45 million respectively, totaling to an annual benefit of US $116.96 million Therefore, in Saudi Arabia and particularly in Holiest cities of Makkah and Madinah the benefits of waste to energy are several, including the development of renewable-energy, solving MSW problems, new businesses, and job creation and improving environmental and public health.
  •  
34.
  • Salo-Ahen, Outi M. H., et al. (författare)
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
  • 2021
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 9:1
  • Forskningsöversikt (refereegranskat)abstract
    • Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
  •  
35.
  • Shadab, Hamna, et al. (författare)
  • Cross-mixing study of a poisonous Cestrum species, Cestrum diurnum in herbal raw material by chemical fingerprinting using LC-ESI-QTOF-MS/MS
  • 2020
  • Ingår i: Arabian Journal of Chemistry. - : ELSEVIER. - 1878-5352 .- 1878-5379. ; 13:11, s. 7851-7859
  • Tidskriftsartikel (refereegranskat)abstract
    • Poisonous plants are widely distributed and may have risk of phytotoxicity upon mixing with medicinal plants. Several species of Cestrum genus are poisonous and linked with many serious health issues. In the present study, cross-mixing of a toxic plant, Cestrum diurnum with morphologically resembling medicinal plant, Adhatoda vasica was studied using chemical fingerprinting approach. LC-ESI-MS/MS tool was used to develop the chemical fingerprints of three toxic species of Cestrum, including, C. diurnum, C. nocturnum and C. parqui. Total forty-three compounds were identified using high-resolution LC-ESI-MS/MS data comparison. Chemometric analyses were done to compare the distribution of identified compounds present in these Cestrum species. One of the identified compounds, nornicotine (a toxic compound) was also quantified using LC-IT-MS/MS. Adulteration study was conducted by mixing toxic C. diurnum in A. vasica with various ratios (w/w) and five differentiable compounds were identified to detect the adulteration. The method was able to detect up to the limit of 5% mixing of toxic C. diurnum. Moreover, cytotoxicity of the methanolic extracts of these three species were also studied on normal human PBMC (peripheral blood mononuclear cells) and all found to be toxic, while the C. nocturnum showed the highest level of toxicity with the EC50 12.5 mu g/mL.
  •  
36.
  • Shah, Aqeel Ahmed, et al. (författare)
  • Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange
  • 2020
  • Ingår i: Ceramics International. - Oxford : Elsevier. - 0272-8842 .- 1873-3956. ; 46:8, part A, s. 9997-10005
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, zinc oxide (ZnO) nanorods are doped with copper by low temperature aqueous chemical growth method using different concentrations of copper 5 mg, 10 mg, 15 mg and 20 mg and labeled as sample 1, 2, 3 and 4 respectively. The morphology and phase purity of nanostructures was investigated by scanning electron microscopy, and powder X-ray diffraction techniques. The optical characterization was carried out through UV–Vis spectrophotometer. The band gap of coper doped ZnO has brought reduction at 250–600 nm and it indicates the fewer time for the recombination of electron and hole pairs, thus enhanced photo degradation efficiency is found. ZnO exhibits nanorods like shape even after the doping of copper. The photo degradation efficiency for the two chronic dyes such as methyl orange MO and methylene blue MB was found to be 57.5% and 60% respectively for a time of 180 mints. This study suggests that the copper impurity in ZnO can tailor its photocatalytic activity at considerable rate. The proposed photo catalysts are promising and can be used for the waste water treatment and other environmental applications. © 2019 Elsevier Ltd and Techna Group S.r.l.
  •  
37.
  • Shah, Shahid, et al. (författare)
  • Assessment of health-related quality of life among patients with obesity, hypertension and type 2 diabetes mellitus and its relationship with multimorbidity
  • 2023
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity, hypertension (HTN) and type 2 diabetes (T2D) are among the multifactorial disorders that occur at higher prevalence in a population. This study aims to assess the health-related quality of life (HRQoL) of patients with obesity, HTN and T2D individually and in the form of multimorbidity. A questionnaire-based cross-sectional study was conducted among the patients in 15 private clinics of Punjab, Pakistan. A stratified random sampling technique was used to collect the data from patients with obesity, HTN and T2D or their comorbidity. A total of 1350 patients responded by completing the questionnaire. The HRQoL of these patients was assessed using the EQ-5D-5L questionnaire (a standardized instrument for measuring generic health status). Statistical analysis was performed using chi-square test, Mann-Whitney U test, and Kruskal-Wallis test. Multivariate linear regression model was used to model the visual analogue scale (VAS) score. In total, 15% of patients had combined obesity, HTN and T2D; 16.5% had HTN and T2D; 13.5% had obesity and HTN and 12.8% had obesity and T2D. Only 15.8% of patients had obesity, 14.3% had HTN, and 12% had T2D. Mann Whitney-U test gave the statistically significant (p = <0.001) HRQoL VAS score55.1 (±23.2) of patients with the obesity. HRQoL VAS scores of patients with obesity were found to be higher when compared to patients with both T2D 49.8 (±15.4) and HTN 48.2 (±21). Diagnosis of one, two and three diseases showed significant results in VAS with all variables including gender (p = 0.004), educational level (p = <0.001), marital status (p<0.001), residence (p = <0.001), financial situation (p = <0.001) and monthly income (p = <0.001). The most frequently observed extremely problematic dimension was anxiety/ depression (47%) and the self-care (10%) was the least affected. Patient HRQoL is decreased by T2D, HTN, and obesity. The impact of these diseases coexisting is more detrimental to HRQoL.
  •  
38.
  • Siddiqui, Amna Jabbar, et al. (författare)
  • Serum metallomics reveals insights into the associations of elements with the progression of preleukemic diseases toward acute leukemia
  • 2024
  • Ingår i: Biology Methods and Protocols. - : Oxford University Press. - 2396-8923. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute leukemia (AL) is a critical neoplasm of white blood cells with two main subtypes: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This study is focused on understanding the association of the preleukemic disease aplastic anemia (APA) with ALL and AML at metallomic level, using healthy subjects as a control. In this study, a validated and efficient inductively coupled plasma-mass spectrometry/MS-based workflow was employed to profile a total of 13 metallomic features. The study encompassed 41 patients with AML, 62 patients with ALL, 46 patients with APA, and 55 age-matched healthy controls. The metallomic features consisted of eight essential elements (Ca, Co, Cu, Fe, Mg, Mn, Se, and Zn) and five non-essential/toxic elements (Ag, Cd, Cr, Ni, and Pb). Six out of the 13 elements were found to be substantially different (P < .05) using absolute concentrations between serum samples of AL (ALL and AML) and preleukemia (APA) patients in comparison with healthy subjects. Elements including magnesium, calcium, iron, copper, and zinc were upregulated and only one element (chromium) was downregulated in serum samples of disease when compared with healthy subjects. Through the utilization of both univariate tests and multivariate classification modeling, it was determined that chromium exhibited a progressive behavior among the studied elements. Specifically, chromium displayed a sequential upregulation from healthy individuals to preleukemic disease (APA), and ultimately in patients diagnosed with ALL. Overall, metallomic-based biomarkers may have the utility to predict the association of APA with ALL.
  •  
39.
  • Sufyan, Ali, et al. (författare)
  • Monolayer TiC—A high-performance Dirac anode with ultralow diffusion barriers and high energy densities for Li-ion and Na-ion batteries
  • 2024
  • Ingår i: Applied Surface Science. - : Elsevier B.V.. - 0169-4332 .- 1873-5584. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional Dirac materials have stimulated substantial research interest as binder-free anodes in metal-ion batteries, owing to their ultrahigh electronic conductivity, large specific area, and higher energy density. Here, using first-principles density functional theory calculations, we have investigated the feasibility of monolayer TiC as a potential anode material for Li/Na-ion batteries. The results indicate that monolayer TiC exhibits excellent dynamical and thermal stability. The electronic structure of monolayer TiC shows semimetallic characteristics with a Dirac cone at the M high symmetry point and the formation of Ti or C vacancies transforms the Dirac cone into a nodal loop or a nodal surface, respectively. Thus, monolayer TiC possesses superior electrical conductivity, which can be further enhanced by the formation of Ti or C vacancies in the material. Furthermore, the calculated adsorption energy values of -0.85 and -0.46 eV for Li-ion and Na-ion, respectively, indicate that Li/Na atom adsorption over monolayer TiC is a favorable process. The density of states plots show that after the adsorption of a single Li/Na atom, monolayer TiC maintains its metallic state, which is advantageous for the diffusion of stored electrons. Most remarkably, monolayer TiC exhibits energy densities of 2684 and 2015 mWh/g for Li and Na, respectively, which are significantly higher than commercial graphite and most other 2D anode materials. The fully loaded TiC anode exhibits excellent cycle stability with volume expansions as low as 0.13 and 0.11%, for Li and Na, respectively. Furthermore, an ultrafast diffusivity with low energy barriers of 0.02 and 0.10 eV is found in monolayer TiC for Li-ion and Na-ion, respectively, which suggests that it has an excellent charge/discharge capability. These exceptional properties make monolayer TiC an excellent candidate as an anode material for Li-ion and Na-ion batteries. Finally, SiC(111) has been proposed as a candidate substrate for monolayer TiC due to its minimal lattice mismatch.
  •  
40.
  • Sufyan, Ali, et al. (författare)
  • V4C3 MXene: a Type-II Nodal Line Semimetal with Potential as High-Performing Anode Material for Mg-Ion Battery
  • 2024
  • Ingår i: ChemSusChem. - : John Wiley & Sons. - 1864-5631 .- 1864-564X. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used density functional theory simulations to explore the topological characteristics of a new MXene-like material, V4C3, and its oxide counterpart, assessing their potential as anode materials for Mg-ion batteries. Our research reveals that V4C3 monolayer is a topological type-II nodal line semimetal, protected by time reversal and spatial inversion symmetries. This type-II nodal line is marked by unique drumhead-like edge states that appear either inside or outside the loop circle, contingent upon the edge ending. Intriguingly, even with an increase in metallicity due to oxygen functionalization, the topological features of V4C3 remain intact. Consequently, the monolayer V4C3 has a topologically enhanced electrical conductivity that amplifies further upon oxygen functionalization. During the charging phase, a remarkable storage concentration led to a peak specific capacity of 894.73 mAh g−1 for V4C3, which only decreases to 789.33 mAh g−1 for V4C3O2. When compared to V2C, V4C3 displays a significantly lower specific capacity loss due to functionalization, demonstrating its superior electrochemical properties. Additionally, V4C3 and V4C3O2 exhibit moderate average open-circuit voltages (0.54 V for V4C3 and 0.58 V for V4C3O2) and energy barriers for intercalation migration (ranging between 0.29–0.63 eV), which are desirable for anode materials. Thus, our simulation results support V4C3 potential as an efficient anode material for Mg-ion batteries.
  •  
41.
  • Syed, Muzna, et al. (författare)
  • Chemical fingerprinting of three Anemone species and an adulteration study to detect cross mixing of medicinal plants by HPLC-HR-ESI-MS/MS method
  • 2021
  • Ingår i: JOURNAL OF KING SAUD UNIVERSITY SCIENCE. - : Elsevier. - 1018-3647 .- 2213-686X. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The adulteration of plant raw materials used for the preparation of herbal drugs with foreign plant material is one of the important issues in the quality control of herbal products. Chemical fingerprinting is a well-known approach for the characterization of secondary metabolites associated with the plant species and can be used for quality control of plant material. The current study centred on the development of chemical fingerprinting of three medicinal plants of genus Anemone including A. obtusiloba, A. falconeri and A tetrasepala through identification of their metabolites using LC-ESI-QTOF-MS/ MS analysis. Thirty compounds were identified by using high-resolution positive and negative electrospray-ionization (ESI) modes and MS/MS analysis. The identified compounds belong to diterpenoids, alkaloids, phenols, flavonoids and other classes and their distribution among the analysed species was studied using different statistical tools. Moreover, an LC-HR-ESI-MS/MS method was developed to detect the cross mixing of A. obtusiloba with Ziziphus jujuba. Seven chromatographically differentiative peaks confined to A. obtusiloba were selected to detect its contamination in adulterated samples. The method was able to detect as low as 20% mixing of A. obtusiloba in Z. jujuba. This study can play a significant role to manage the quality control of herbal medicines and to identify lead natural products of these plants.
  •  
42.
  • Tiwari, Prayag, 1991-, et al. (författare)
  • Quantum Fuzzy Neural Network for multimodal sentiment and sarcasm detection
  • 2024
  • Ingår i: Information Fusion. - Amsterdam : Elsevier. - 1566-2535 .- 1872-6305. ; 103, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Sentiment and sarcasm detection in social media contribute to assessing social opinion trends. Over the years, most artificial intelligence (AI) methods have relied on real values to characterize the sentimental and sarcastic features in language. These methods often overlook the complexity and uncertainty of sentimental and sarcastic elements in human language. Therefore, this paper proposes the Quantum Fuzzy Neural Network (QFNN), a multimodal fusion and multitask learning algorithm with a Seq2Seq structure that combines Classical and Quantum Neural Networks (QNN), and fuzzy logic. Complex numbers are used in the Fuzzifier to capture sentiment and sarcasm features, and QNN are used in the Defuzzifier to obtain the prediction. The experiments are conducted on classical computers by constructing quantum circuits in a simulated noisy environment. The results show that QFNN can outperform several recent methods in sarcasm and sentiment detection task on two datasets (Mustard and Memotion). Moreover, by assessing the fidelity of quantum circuits in a noisy environment, QFNN was found to have excellent robustness. The QFNN circuit also possesses expressible and entanglement capabilities, proving effective in various settings. Our code is available at https://github.com/prayagtiwari/QFNN. © 2023 Elsevier B.V.
  •  
43.
  • Usman, Muhammad, et al. (författare)
  • Evaluation of the chronic intoxication of fluoride on human serum metabolome using untargeted metabolomics
  • 2022
  • Ingår i: Arabian Journal of Chemistry. - : Elsevier BV. - 1878-5352 .- 1878-5379. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Drinking water is the main source of fluoride intake for the human body and its regulated consumption helps in decreasing dental caries. However, excessive fluoride consumption over a prolonged time period causes fluorosis disease which adversely affects many tissues and organs of the body. This paper describes the evaluation of chronic intoxication of fluoride on human serum metabolome. The untargeted metabolomics approach using UPLC-QTOF-MS/MS is applied for metabolomic profiling, whereas the estimation of fluoride in serum samples was carried out using the ion-selective electrode (ISE). Fluoride concentration was found to be 0.16–1.25 mg/L in serum samples of 39 fluorosis patients and 0.008–0.045 mg/L in 20 healthy samples. A total of 47 metabolites were identified based on the high-resolution mass spectrometry analysis. A volcano plot was generated to discriminate features that are significantly different between the fluorosis and healthy groups at the probability of 0.05 and fold change ≥ 2. Among all identified metabolites, intensities of ten differential identified metabolites including inosine, α-linolenic acid, guanosine, octanoyl-L-carnitine, His-Trp, phytosphingosine, lauroyl-L-carnitine, hydrocortisone, deoxyinosine and dodecanedioic acid have been found altered in disease samples compared to healthy controls. Major pathways identified based on these metabolites include energy metabolism, fatty acid oxidation, purine degradation pathway, elevated protein degradation, and increased ω-6 fatty acid linoleate signatures were observed.
  •  
44.
  • Zulfiqar, Waqas, et al. (författare)
  • Revisiting the structural, electronic and photocatalytic properties of Ti and Zr based perovskites with meta-GGA functionals of DFT
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - UK : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 9:14, s. 4862-4876
  • Tidskriftsartikel (refereegranskat)abstract
    • The strongly constrained and appropriately normed (SCAN) functional of density functional theory (DFT) conforms to all possible exact constraints required of a meta-GGA functional and offers good approximations for structural and energetic properties of solids in comparison to experiments. However, SCAN is unable to fully overcome the underestimation of band gap for perovskite oxide materials suitable for photocatalysis. In the present work, we use a combination of meta-GGAs SCAN and modified Becke–Johnson local density approximation (mBJ-LDA) potential functional to accurately compute the structural, energetic, mechanical, vibrational and optoelectronic properties of Ti and Zr based ABO3 (A = Sr, Ba and B = Ti and Zr) perovskite oxides. In addition to evaluating their physical properties, the potential applications of these materials as photocatalyst operating in the UV region of the electromagnetic spectrum are also examined. We show that the structural, energetic, mechanical and vibrational properties calculated using SCAN are in better agreement with experimental data as compared to the commonly used semi-local functionals of DFT. However, the optoelectronic properties of the large band gap Ti and Zr based perovskite oxides are further improved if computed with the mBJ-LDA potential functional, whereby an even higher level of accuracy than with SCAN is achieved, with results that are comparable to the computationally expensive hybrid DFT functionals. On the whole, our DFT calculations indicate that a combination of SCAN and mBJ-LDA functionals for exploring the physical properties of large band gap perovskite oxides provide the means for identifying photocatalysts suitable for hydrogen production at low computational costs.
  •  
45.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-45 av 45
Typ av publikation
tidskriftsartikel (43)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (45)
Författare/redaktör
Musharraf, Syed Ghul ... (12)
Abbas, Ghulam (10)
Alay-e-Abbas, Syed M ... (6)
Ali, Arslan (6)
El-Seedi, Hesham R. (6)
El-Seedi, Hesham (6)
visa fler...
Larsson, J. Andreas (5)
Sajjad, Muhammad (5)
Sahebkar, Amirhossei ... (5)
Koyanagi, Ai (5)
Edvardsson, David (5)
Sheikh, Aziz (5)
Hay, Simon I. (5)
Afarideh, Mohsen (5)
Agrawal, Sutapa (5)
Alahdab, Fares (5)
Badawi, Alaa (5)
Bensenor, Isabela M. (5)
Esteghamati, Alireza (5)
Feigin, Valery L. (5)
Geleijnse, Johanna M ... (5)
Grosso, Giuseppe (5)
Hamidi, Samer (5)
Hassen, Hamid Yimam (5)
Jonas, Jost B. (5)
Kasaeian, Amir (5)
Khader, Yousef Saleh (5)
Khalil, Ibrahim A. (5)
Khang, Young-Ho (5)
Kokubo, Yoshihiro (5)
Lorkowski, Stefan (5)
Lotufo, Paulo A. (5)
Malekzadeh, Reza (5)
Mendoza, Walter (5)
Miller, Ted R. (5)
Mokdad, Ali H. (5)
Naghavi, Mohsen (5)
Pereira, David M. (5)
Qorbani, Mostafa (5)
Roshandel, Gholamrez ... (5)
Sartorius, Benn (5)
Sepanlou, Sadaf G. (5)
Tran, Bach Xuan (5)
Ukwaja, Kingsley Nna ... (5)
Ullah, Irfan (5)
Uthman, Olalekan A. (5)
Vollset, Stein Emil (5)
Vos, Theo (5)
Xu, Gelin (5)
Yonemoto, Naohiro (5)
visa färre...
Lärosäte
Uppsala universitet (14)
Luleå tekniska universitet (14)
Högskolan i Halmstad (6)
Umeå universitet (5)
Lunds universitet (5)
Karolinska Institutet (5)
visa fler...
Högskolan Dalarna (5)
Chalmers tekniska högskola (4)
Stockholms universitet (2)
Mälardalens universitet (2)
Linköpings universitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Södertörns högskola (1)
Högskolan i Borås (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (45)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Medicin och hälsovetenskap (11)
Teknik (5)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy