SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mullers E) "

Sökning: WFRF:(Mullers E)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barucca, G., et al. (författare)
  • Study of excited Ξ baryons with the P¯ ANDA detector
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment P¯ANDA will provide direct access to final states containing a Ξ¯ Ξ pair, for which production cross sections up to μb are expected in p¯p reactions. With a luminosity of L= 10 31 cm- 2 s- 1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼106events/day. With a nearly 4 π detector acceptance, P¯ANDA will thus be a hyperon factory. In this study, reactions of the type p¯p → Ξ¯ +Ξ∗ - as well as p¯p → Ξ¯ ∗ +Ξ- with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.
  •  
2.
  • Barucca, G., et al. (författare)
  • The potential of Λ and Ξ- studies with PANDA at FAIR
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: p¯ p→ Λ¯ Λ and p¯ p→ Ξ¯ +Ξ-. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA.
  •  
3.
  •  
4.
  •  
5.
  • Cascales, HS, et al. (författare)
  • Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate PLK1
  • 2021
  • Ingår i: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.
  •  
6.
  • Cascales, HS, et al. (författare)
  • How the cell cycle enforces senescence
  • 2017
  • Ingår i: Aging. - : Impact Journals, LLC. - 1945-4589. ; 9:10, s. 2022-2023
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Fredriksson, Johanna, et al. (författare)
  • GRK2 selectively attenuates the neutrophil NADPH-oxidase response triggered by beta-arrestin recruiting GPR84 agonists
  • 2022
  • Ingår i: Biochimica Et Biophysica Acta-Molecular Cell Research. - : Elsevier BV. - 0167-4889. ; 1869:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84-but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by beta-arrestin recruitment data. The ROS production induced by a non beta-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this beta-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with beta-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Lafranchi, L, et al. (författare)
  • FRET-Based Sorting of Live Cells Reveals Shifted Balance between PLK1 and CDK1 Activities During Checkpoint Recovery
  • 2020
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells recovering from the G2/M DNA damage checkpoint rely more on Aurora A-PLK1 signaling than cells progressing through an unperturbed G2 phase, but the reason for this discrepancy is not known. Here, we devised a method based on a FRET reporter for PLK1 activity to sort cells in distinct populations within G2 phase. We employed mass spectroscopy to characterize changes in protein levels through an unperturbed G2 phase and validated that ATAD2 levels decrease in a proteasome-dependent manner. Comparing unperturbed cells with cells recovering from DNA damage, we note that at similar PLK1 activities, recovering cells contain higher levels of Cyclin B1 and increased phosphorylation of CDK1 targets. The increased Cyclin B1 levels are due to continuous Cyclin B1 production during a DNA damage response and are sustained until mitosis. Whereas partial inhibition of PLK1 suppresses mitotic entry more efficiently when cells recover from a checkpoint, partial inhibition of CDK1 suppresses mitotic entry more efficiently in unperturbed cells. Our findings provide a resource for proteome changes during G2 phase, show that the mitotic entry network is rewired during a DNA damage response, and suggest that the bottleneck for mitotic entry shifts from CDK1 to PLK1 after DNA damage.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Palano, G, et al. (författare)
  • In vitro Assays and Imaging Methods for Drug Discovery for Cardiac Fibrosis
  • 2021
  • Ingår i: Frontiers in physiology. - : Frontiers Media SA. - 1664-042X. ; 12, s. 697270-
  • Tidskriftsartikel (refereegranskat)abstract
    • As a result of stress, injury, or aging, cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components resulting in pathological remodeling, tissue stiffening, ventricular dilatation, and cardiac dysfunction that contribute to heart failure (HF) and eventually death. Currently, there are no effective therapies specifically targeting cardiac fibrosis, partially due to limited understanding of the pathological mechanisms and the lack of predictive in vitro models for high-throughput screening of antifibrotic compounds. The use of more relevant cell models, three-dimensional (3D) models, and coculture systems, together with high-content imaging (HCI) and machine learning (ML)-based image analysis, is expected to improve predictivity and throughput of in vitro models for cardiac fibrosis. In this review, we present an overview of available in vitro assays for cardiac fibrosis. We highlight the potential of more physiological 3D cardiac organoids and coculture systems and discuss HCI and automated artificial intelligence (AI)-based image analysis as key methods able to capture the complexity of cardiac fibrosis in vitro. As 3D and coculture models will soon be sufficiently mature for application in large-scale preclinical drug discovery, we expect the combination of more relevant models and high-content analysis to greatly increase translation from in vitro to in vivo models and facilitate the discovery of novel targets and drugs against cardiac fibrosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy