SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murrell B.) "

Sökning: WFRF:(Murrell B.)

  • Resultat 1-50 av 74
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
3.
  • Chalmers, J. R., et al. (författare)
  • Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)
  • 2016
  • Ingår i: British Journal of Dermatology. - : Oxford University Press (OUP). - 0007-0963 .- 1365-2133. ; 175:1, s. 69-79
  • Tidskriftsartikel (refereegranskat)abstract
    • This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmo, Sweden on 23-24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [ including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Dufour, C, et al. (författare)
  • Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes
  • 2023
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1, s. 1115-
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.
  •  
10.
  •  
11.
  • Gallagher, Michael D., et al. (författare)
  • TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
  • 2014
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 127:3, s. 407-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
  •  
12.
  • Hanke, L, et al. (författare)
  • A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 155-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer–dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.
  •  
13.
  •  
14.
  • Hober, Sophia, Professor, 1965-, et al. (författare)
  • Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay
  • 2021
  • Ingår i: Clinical & Translational Immunology. - : Wiley. - 2050-0068. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods. More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results. Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion. These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
  •  
15.
  •  
16.
  •  
17.
  • Martin, DP, et al. (författare)
  • Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function
  • 2022
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
  •  
18.
  •  
19.
  • Patro, SC, et al. (författare)
  • Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 116:51, s. 25891-25899
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for “viral reconstruction” to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.
  •  
20.
  • Pushparaj, Pradeepa, et al. (författare)
  • Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies
  • 2023
  • Ingår i: Immunity. - : Elsevier BV. - 1074-7613 .- 1097-4180. ; 56:1, s. 7-206
  • Tidskriftsartikel (refereegranskat)abstract
    • The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Castro Dopico, Xaquin, et al. (författare)
  • Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates
  • 2022
  • Ingår i: Clinical & Translational Immunology (CTI). - : John Wiley & Sons. - 2050-0068. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. Methods: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. Results: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50–99% likelihood, and 4.0% (n = 203) to have a 10–49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. Conclusion: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.
  •  
28.
  •  
29.
  • Chernyshev, Mark, et al. (författare)
  • Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vaccination of SARS-CoV-2 convalescent individuals generates broad and potent antibody responses. Here, we isolate 459 spike-specific monoclonal antibodies (mAbs) from two individuals who were infected with the index variant of SARS-CoV-2 and later boosted with mRNA-1273. We characterize mAb genetic features by sequence assignments to the donors' personal immunoglobulin genotypes and assess antibody neutralizing activities against index SARS-CoV-2, Beta, Delta, and Omicron variants. The mAbs used a broad range of immunoglobulin heavy chain (IGH) V genes in the response to all sub-determinants of the spike examined, with similar characteristics observed in both donors. IGH repertoire sequencing and B cell lineage tracing at longitudinal time points reveals extensive evolution of SARS-CoV-2 spike-binding antibodies from acute infection until vaccination five months later. These results demonstrate that highly polyclonal repertoires of affinity-matured memory B cells are efficiently recalled by vaccination, providing a basis for the potent antibody responses observed in convalescent persons following vaccination.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Christensen, D, et al. (författare)
  • SARS-CoV-2 spike HexaPro formulated in aluminium hydroxide and administered in an accelerated vaccination schedule partially protects Syrian Hamsters against viral challenge despite low neutralizing antibody responses
  • 2023
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 14, s. 941281-
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.
  •  
34.
  • Custodio, TF, et al. (författare)
  • Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5588-
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the ‘up’ ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
  •  
35.
  •  
36.
  •  
37.
  • Golden, M, et al. (författare)
  • Evolutionary Analyses of Base-Pairing Interactions in DNA and RNA Secondary Structures
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 37:2, s. 576-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Pairs of nucleotides within functional nucleic acid secondary structures often display evidence of coevolution that is consistent with the maintenance of base-pairing. Here, we introduce a sequence evolution model, MESSI (Modeling the Evolution of Secondary Structure Interactions), that infers coevolution associated with base-paired sites in DNA or RNA sequence alignments. MESSI can estimate coevolution while accounting for an unknown secondary structure. MESSI can also use graphics processing unit parallelism to increase computational speed. We used MESSI to infer coevolution associated with GC, AU (AT in DNA), GU (GT in DNA) pairs in noncoding RNA alignments, and in single-stranded RNA and DNA virus alignments. Estimates of GU pair coevolution were found to be higher at base-paired sites in single-stranded RNA viruses and noncoding RNAs than estimates of GT pair coevolution in single-stranded DNA viruses. A potential biophysical explanation is that GT pairs do not stabilize DNA secondary structures to the same extent that GU pairs do in RNA. Additionally, MESSI estimates the degrees of coevolution at individual base-paired sites in an alignment. These estimates were computed for a SHAPE-MaP-determined HIV-1 NL4-3 RNA secondary structure. We found that estimates of coevolution were more strongly correlated with experimentally determined SHAPE-MaP pairing scores than three nonevolutionary measures of base-pairing covariation. To assist researchers in prioritizing substructures with potential functionality, MESSI automatically ranks substructures by degrees of coevolution at base-paired sites within them. Such a ranking was created for an HIV-1 subtype B alignment, revealing an excess of top-ranking substructures that have been previously identified as having structure-related functional importance, among several uncharacterized top-ranking substructures.
  •  
38.
  • Hanke, L, et al. (författare)
  • An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4420-
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.
  •  
39.
  • Hanke, L, et al. (författare)
  • Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies
  • 2022
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:12, s. eabm0220-
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 μg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.
  •  
40.
  •  
41.
  • Huang, DL, et al. (författare)
  • Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5850-
  • Tidskriftsartikel (refereegranskat)abstract
    • HIV broadly neutralizing antibodies (bnAbs) can suppress viremia and protect against HIV infection. However, their elicitation is made difficult by low frequencies of appropriate precursor B cell receptors and the complex maturation pathways required to generate bnAbs from these precursors. Antibody genes can be engineered into B cells for expression as both a functional antigen receptor on cell surfaces and as secreted antibody. Here, we show that HIV bnAb-engineered primary mouse B cells can be adoptively transferred and vaccinated in immunocompetent mice resulting in the expansion of durable bnAb memory and long-lived plasma cells. Somatic hypermutation after immunization indicates that engineered cells have the capacity to respond to an evolving pathogen. These results encourage further exploration of engineered B cell vaccines as a strategy for durable elicitation of HIV bnAbs to protect against infection and as a contributor to a functional HIV cure.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Martin, DP, et al. (författare)
  • RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets
  • 2021
  • Ingår i: Virus evolution. - : Oxford University Press (OUP). - 2057-1577. ; 7:1, s. veaa087-
  • Tidskriftsartikel (refereegranskat)abstract
    • For the past 20 years, the recombination detection program (RDP) project has focused on the development of a fast, flexible, and easy to use Windows-based recombination analysis tool. Whereas previous versions of this tool have relied on considerable user-mediated verification of detected recombination events, the latest iteration, RDP5, is automated enough that it can be integrated within analysis pipelines and run without any user input. The main innovation enabling this degree of automation is the implementation of statistical tests to identify recombination signals that could be attributable to evolutionary processes other than recombination. The additional analysis time required for these tests has been offset by algorithmic improvements throughout the program such that, relative to RDP4, RDP5 will still run up to five times faster and be capable of analyzing alignments containing twice as many sequences (up to 5000) that are five times longer (up to 50 million sites). For users wanting to remove signals of recombination from their datasets before using them for downstream phylogenetics-based molecular evolution analyses, RDP5 can disassemble detected recombinant sequences into their constituent parts and output a variety of different recombination-free datasets in an array of different alignment formats. For users that are interested in exploring the recombination history of their datasets, all the manual verification, data management and data visualization components of RDP5 have been extensively updated to minimize the amount of time needed by users to individually verify and refine the program’s interpretation of each of the individual recombination events that it detects.
  •  
48.
  • Martin, DP, et al. (författare)
  • RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets
  • 2021
  • Ingår i: Virus evolution. - : Oxford University Press (OUP). - 2057-1577. ; 7:1, s. veaa087-
  • Tidskriftsartikel (refereegranskat)abstract
    • For the past 20 years, the recombination detection program (RDP) project has focused on the development of a fast, flexible, and easy to use Windows-based recombination analysis tool. Whereas previous versions of this tool have relied on considerable user-mediated verification of detected recombination events, the latest iteration, RDP5, is automated enough that it can be integrated within analysis pipelines and run without any user input. The main innovation enabling this degree of automation is the implementation of statistical tests to identify recombination signals that could be attributable to evolutionary processes other than recombination. The additional analysis time required for these tests has been offset by algorithmic improvements throughout the program such that, relative to RDP4, RDP5 will still run up to five times faster and be capable of analyzing alignments containing twice as many sequences (up to 5000) that are five times longer (up to 50 million sites). For users wanting to remove signals of recombination from their datasets before using them for downstream phylogenetics-based molecular evolution analyses, RDP5 can disassemble detected recombinant sequences into their constituent parts and output a variety of different recombination-free datasets in an array of different alignment formats. For users that are interested in exploring the recombination history of their datasets, all the manual verification, data management and data visualization components of RDP5 have been extensively updated to minimize the amount of time needed by users to individually verify and refine the program’s interpretation of each of the individual recombination events that it detects.
  •  
49.
  • Martin, DP, et al. (författare)
  • The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape
  • 2021
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The emergence and rapid rise in prevalence of three independent SARS-CoV-2 “501Y lineages’’, B.1.1.7, B.1.351 and P.1, in the last three months of 2020 prompted renewed concerns about the evolutionary capacity of SARS-CoV-2 to adapt to both rising population immunity, and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence, all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARS-CoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on various SARS-CoV-2 genes and gene segments (such as S, nsp2 and nsp6), that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 74

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy