SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Murty V. V. V. S.) "

Sökning: WFRF:(Murty V. V. V. S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maurer, Matthew, et al. (författare)
  • 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma
  • 2009
  • Ingår i: Cancer Research. - 1538-7445. ; 69:15, s. 306-6299
  • Tidskriftsartikel (refereegranskat)abstract
    • Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP(3)). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP(3) recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer.
  •  
2.
  • Pasche, Boris, et al. (författare)
  • Somatic acquisition and signaling of TGFBR1*6A in cancer
  • 2005
  • Ingår i: Journal of the American Medical Association (JAMA). - : American Medical Association (AMA). - 0098-7484 .- 1538-3598. ; 294:13, s. 1634-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: TGFBR1*6A is a common polymorphism of the type I transforming growth factor 0 receptor (TGFBR1). Epidemiological studies suggest that TGFBR1*6A may act as a tumor susceptibility allele. How TGFBR1*6A contributes to cancer development is largely unknown.. Objectives: To determine whether TGFBR1*6A is somatically acquired by primary tumors and metastases during cancer development and whether the 3-amino acid deletion that differentiates TGFBR1*6A from TGFBR1 is part of the mature receptor or part of the signal sequence and to investigate TGFBR1*6A signaling in cancer cells. Design, Setting, and Patients: Tumor And germline tissues from 531 patients with a diagnosis of head and neck, colorectal, or breast cancer recruited from 3 centers in the United States and from 1 center in Spain from June 1, 1994, through June 30, 2004, In vitro translation assays, MCF-7 breast cancer cells stably transfected with TGFBR1*6A, TGFBR1, or the vector alone, DLD-1 colorectal cancer cells that endogenously carry TGFBR1*6A, and SW48 colorectal cancer cells that do not carry TGFBR1*6A. Main Outcome Measures: TGFBR1*6A somatic acquisition in cancer. Determination of the amino terminus of the mature TGFBR1*6A and TGFBR1 receptors. Determination of TGF-beta-dependent cell proliferation. Results: TGFBR1*6A was somatically acquired in 13 of 44 (29.5%) colorectal cancer metastases, in 4 of 157 (2.5%) of colorectal tumors, in 4 of 226 (1.8%) head and neck primary tumors, and in none of the 104 patients with breast cancer. TGFBR1*6A somatic acquisition is not associated with loss of heterozygosity, microsatellite instability, or a mutator phenotype. The signal sequences of TGFBR1 and TGFBR1*6A are cleaved at the same site resulting in identical mature receptors. TGFBR1*6A may switch TGF-beta growth inhibitory signals into growth stimulatory signals in MCF-7 breast cancer cells and in DLD-1 colorectal cancer cells. Conclusions: TGFBR1*6A is somatically acquired in 29.5% of liver metastases from colorectal cancer and may bestow cancer cells with a growth advantage in the presence of TGF-beta. The functional consequences of this conversion appear to be mediated by the TGFBR1*6A signal sequence rather than by the mature receptor. The results highlight a new facet of TGF-beta signaling in cancer and suggest that TGFBR1*6A may represent a potential therapeutic target in cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy