SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muscheler R.) "

Sökning: WFRF:(Muscheler R.)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
2.
  • Sigl, M., et al. (författare)
  • Timing and climate forcing of volcanic eruptions for the past 2,500 years
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7562, s. 543-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
  •  
3.
  • Harding, P., et al. (författare)
  • Wind regime changes in the Euro-Atlantic region driven by Late-Holocene Grand Solar Minima
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894.
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding atmospheric response to radiative forcing, including the intensity and distribution of wind patterns is critical as this might have important implications in the coming decades. Long-term episodes of reduced solar activity (i.e. Grand Solar Minima, GSM) have triggered rapid climate change in the past, recorded in proxy-based records, including varved sediments from Meerfelder Maar, Germany, where the Homeric GSM (~ 2800 years ago) was studied. This study reconstructs windy conditions during the same GSM from Diss Mere, another varved record in England, to support the solar-wind linkage in the North Atlantic-European region. We use diatoms as proxies for windiness and support the palaeolimnological and palaeoclimate interpretation with a multi-proxy approach, including sedimentological, geochemical, and biological (chironomids and pollen) evidence. The diatom assemblage documents a shift from Pantocsekiella ocellata dominance to Stephanodiscus parvus and Lindavia comta, indicating a shift to more turbulent waters from ~ 2767 ± 28, linked to increased windiness. This shift is synchronous with changes in 14C production, linked to solar activity changes during the GSM. Both proxy records reflect a rapid and synchronous atmospheric response (i.e. stronger winds) at the onset and during the GSM in the North Atlantic and continental Europe. In order to test whether this solar-wind linkage is consistent during other GSMs and to understand the underlying climate dynamics, we analyse the wind response to solar forcing at the two study sites during the Little Ice Age, a period that includes several GSMs. For this, we have used a reconstruction based on a 1200-year-long simulation with an isotope-enabled climate model. Our study suggests that wind anomalies in the North Atlantic-European sector may relate to an anomalous atmospheric circulation in response to long-term solar forcing leading to north-easterlies modulated by the East Atlantic pattern.
  •  
4.
  • Mekhaldi, F., et al. (författare)
  • No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms
  • 2017
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 122:21, s. 11-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge on the occurrence rate of extreme solar storms is strongly limited by the relatively recent advent of satellite monitoring of the Sun. To extend our perspective of solar storms prior to the satellite era and because atmospheric ionization induced by solar energetic particles (SEPs) can lead to the production of odd nitrogen, nitrate spikes in ice cores have been tentatively used to document both the occurrence and intensity of past SEP events. However, the reliability of the use of nitrate in ice records as a proxy for SEP events is strongly debated. This is partly due to equivocal detection of nitrate spikes in single ice cores and possible alternative sources, such as biomass burning plumes. Here we present new continuous high-resolution measurements of nitrate and of the biomass burning species ammonium and black carbon, from several Antarctic and Greenland ice cores. We investigate periods covering the two largest known SEP events of 775 and 994 Common Era as well as the Carrington event and the hard SEP event of February 1956. We report no coincident nitrate spikes associated with any of these benchmark events. We also demonstrate the low reproducibility of the nitrate signal in multiple ice cores and confirm the significant relationship between biomass burning plumes and nitrate spikes in individual ice cores. In the light of these new data, there is no line of evidence that supports the hypothesis that ice cores preserve or document detectable amounts of nitrate produced by SEPs, even for the most extreme events known to date.
  •  
5.
  • Reimer, Paula J., et al. (författare)
  • The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP)
  • 2020
  • Ingår i: Radiocarbon. - 0033-8222. ; 62:4, s. 725-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiocarbon (C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
  •  
6.
  • Schüpbach, S., et al. (författare)
  • Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.
  •  
7.
  • Sigl, Michael, et al. (författare)
  • The WAIS Divide deep ice core WD2014 chronology - Part 2 : Annual-layer counting (0-31 ka BP)
  • 2016
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 12:3, s. 769-786
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5 % of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1 % of the age at three abrupt climate change events between 27 and 31 ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bølling-Allerød Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.
  •  
8.
  • Adolphi, Florian, et al. (författare)
  • Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides : Testing the synchroneity of Dansgaard-Oeschger events
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:11, s. 1755-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial period Northern Hemisphere climate was characterized by extreme and abrupt climate changes, so-called Dansgaard-Oeschger (DO) events. Most clearly observed as temperature changes in Greenland ice-core records, their climatic imprint was geographically widespread. However, the temporal relation between DO events in Greenland and other regions is uncertain due to the chronological uncertainties of each archive, limiting our ability to test hypotheses of synchronous change. In contrast, the assumption of direct synchrony of climate changes forms the basis of many timescales. Here, we use cosmogenic radionuclides (10Be, 36Cl, 14C) to link Greenland ice-core records to U=Th-dated speleothems, quantify offsets between the two timescales, and improve their absolute dating back to 45 000 years ago. This approach allows us to test the assumption that DO events occurred synchronously between Greenland ice-core and tropical speleothem records with unprecedented precision. We find that the onset of DO events occurs within synchronization uncertainties in all investigated records. Importantly, we demonstrate that local discrepancies remain in the temporal development of rapid climate change for specific events and speleothems. These may either be related to the location of proxy records relative to the shifting atmospheric fronts or to underestimated U=Th dating uncertainties. Our study thus highlights the potential for misleading interpretations of the Earth system when applying the common practice of climate wiggle matching.
  •  
9.
  • Bronk Ramsey, Christopher, et al. (författare)
  • Development of the Intcal Database
  • Ingår i: Radiocarbon. - 0033-8222.
  • Tidskriftsartikel (refereegranskat)abstract
    • The IntCal family of radiocarbon (14C) calibration curves is based on research spanning more than three decades. The IntCal group have collated the 14C and calendar age data (mostly derived from primary publications with other types of data and meta-data) and, since 2010, made them available for other sorts of analysis through an open-access database. This has ensured transparency in terms of the data used in the construction of the ratified calibration curves. As the IntCal database expands, work is underway to facilitate best practice for new data submissions, make more of the associated metadata available in a structured form, and help those wishing to process the data with programming languages such as R, Python, and MATLAB. The data and metadata are complex because of the range of different types of archives. A restructured interface, based on the "IntChron"open-access data model, includes tools which allow the data to be plotted and compared without the need for export. The intention is to include complementary information which can be used alongside the main 14C series to provide new insights into the global carbon cycle, as well as facilitating access to the data for other research applications. Overall, this work aims to streamline the generation of new calibration curves.
  •  
10.
  • Bronk Ramsey, C., et al. (författare)
  • Integrating timescales with time-transfer functions: A practical approach for an INTIMATE database
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 106, s. 67-80
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of the INTIMATE project is to integrate palaeo-climate information from terrestrial, ice and marine records so that the timing of environmental response to climate forcing can be compared in both space and time. One of the key difficulties in doing this is the range of different methods of dating that can be used across different disciplines. For this reason, one of the main outputs of INTIMATE has been to use an event-stratigraphic approach which enables researchers to co-register synchronous events (such as the deposition of tephra from major volcanic eruptions) in different archives (Blockley etal., 2012). However, this only partly solves the problem, because it gives information only at particular short intervals where such information is present. Between these points the ability to compare different records is necessarily less precise chronologically. What is needed therefore is a way to quantify the uncertainties in the correlations between different records, even if they are dated by different methods, and make maximum use of the information available that links different records.This paper outlines the design of a database that is intended to provide integration of timescales and associated environmental proxy information. The database allows for the fact that all timescales have their own limitations, which should be quantified in terms of the uncertainties quoted. It also makes use of the fact that each timescale has strengths in terms of describing the data directly associated with it. For this reason the approach taken allows users to look at data on any timescale that can in some way be related to the data of interest, rather than specifying a specific timescale or timescales which should always be used. The information going into the database is primarily: proxy information (principally from sediments and ice cores) against depth, age depth models against reference chronologies (typically IntCal or ice core), and time-transfer functions that relate different timescales to each other, through the use of event stratigraphies or global phenomena such as cosmogenic isotope production rate variations. © 2014 Elsevier Ltd.
  •  
11.
  • Channell, J.E.T., et al. (författare)
  • Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon
  • 2018
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 191, s. 57-72
  • Tidskriftsartikel (refereegranskat)abstract
    • We report magnetic properties and relative paleointensity (RPI) proxies from a suite of 10 conventional piston cores and Kasten cores from the SW Iberian Margin collected during cruise JC089 of the RSS James Cook in August 2013. Mean sedimentation rates are in the 10–20 cm/kyr range. Age models were acquired by correlation of Ca/Ti and Zr/Sr XRF core-scanning data to L* reflectance from the Cariaco Basin that is, in turn, tied to the Greenland ice-core chronology. The natural remanent magnetization (NRM) is represented by a single magnetization component carried by a low-coercivity mineral (magnetite), although reflectance and bulk magnetic properties indicate the presence of a high-coercivity (hematitic) magnetic phase, possibly from eolian dust. The presence of fine-grained hematite means that the sediments are not ideal for RPI studies, however the detrital hematite does not appear to contribute to the NRM or anhysteretic remanent magnetization (ARM). In order to test the usefulness of the RPI data, we construct a stack of 12 RPI records from the SW Iberian Margin for the 0–45 ka interval and compare it with a stack of 12 globally distributed marine and lake records, chosen on the basis of mean sedimentation rates (>15 cm/kyr) and superior age models. The two stacks are similar, but different from published RPI stacks, particularly for the 10–30 ka interval, and imply a virtual axial dipole moment (VADM) high at ∼15–18 ka followed by a drop in field strength from ∼15 to 13 ka. A revised VADM estimate calculated from Greenland 10Be ice-core flux using a contemporary age model is remarkably consistent with the new overall RPI stack, based on Iberian Margin and global RPI records. The elevated atmospheric 14C levels of the last ice age cannot, however, be fully explained by this RPI stack although relative changes such as the long-term drop in atmospheric 14C from 30 to 15 ka are reproduced, supporting the hypothesis of a combined influence of production rate and ocean ventilation on 14C during the last ice age.
  •  
12.
  • Cliver, E. W., et al. (författare)
  • Solar Longitude Distribution of High-energy Proton Flares : Fluences and Spectra
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 900:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of the longitudes of solar flares associated with the high-energy proton events called ground level events (GLEs) can be approximated by a Gaussian with a peak at ∼W60, with a full range from ∼E90 to ∼W150. The longitudes of flares associated with the top third (24 of 72) of GLEs in terms of their >430 MeV fluences (F 430) are primarily distributed over E20-W100 with a skew toward disk center. This 120 span in longitude is comparable to the latitudinal spans of powerful coronal mass ejections (CMEs) from limb flares. Only 5 of 24 strong GLEs are located within the W40-80 zone of good magnetic connection to Earth. GLEs with hard spectra, i.e., a spectral index SI30/200(= log(F 30/F 200)) < 1.5, also tend to avoid W40-80 source regions. Three-fourths of such events (16 of 21) arise in flares outside this range. The above tendencies favor a CME-driven shock source over a flare-resident acceleration process for high-energy solar protons. GLE spectra show a trend, with broad scatter, from hard spectra for events originating in eruptive flares beyond the west limb to soft spectra for GLEs with sources near central meridian. This behavior can be explained in terms of: (1) dominant near-Sun quasi-perpendicular shock acceleration of protons for far western (>W100) GLEs; (2) quasi-parallel shock acceleration for well-connected (W40-80) GLEs, and (3) proton acceleration/trapping at CME-driven bow shocks from central meridian (E20-W20) that strike the Earth.
  •  
13.
  • Czymzik, Markus, et al. (författare)
  • Lagged atmospheric circulation response in the Black Sea region to Greenland Interstadial 10
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:46, s. 28649-28654
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.
  •  
14.
  • Fahrni, Simon M., et al. (författare)
  • Single-Year German oak and Californian Bristlecone Pine C Data at the Beginning of the Hallstatt Plateau from 856 BC to 626 BC
  • 2020
  • Ingår i: Radiocarbon. - 0033-8222. ; 62:4, s. 919-937
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the ongoing effort to improve the Northern Hemisphere radiocarbon (C) calibration curve, this study investigates the period of 856 BC to 626 BC (2805-2575 yr BP) with a total of 403 single-year C measurements. In this age range, IntCal13 was constructed largely from German and Irish oak as well as Californian bristlecone pine C dates, with most samples measured with a 10-yr resolution. The new data presented here is the first atmospheric C single-year record of the older end of the Hallstatt plateau based on an absolutely dated tree-ring chronology. The data helped reveal a major solar proton event (SPE) which caused a spike in the production rate of cosmogenic radionuclides around 2610/2609 BP. This production event is thought to have reached a magnitude similar to the 774/775 AD production event but has remained undetected due to averaging effects in the decadal calibration data. The record leading up to the 2610/2609 BP event reveals a 11-yr solar cycle with varying cyclicity. Features of the new data and the benefits of higher resolution calibration are discussed.
  •  
15.
  • Heaton, T. J., et al. (författare)
  • Radiocarbon : A key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6568
  • Forskningsöversikt (refereegranskat)abstract
    • Radiocarbon (14C), as a consequence of its production in the atmosphere and subsequent dispersal through the carbon cycle, is a key tracer for studying the Earth system. Knowledge of past 14C levels improves our understanding of climate processes, the Sun, the geodynamo, and the carbon cycle. Recently updated radiocarbon calibration curves (IntCal20, SHCal20, and Marine20) provide unprecedented accuracy in our estimates of 14C levels back to the limit of the 14C technique (~55,000 years ago). Such improved detail creates new opportunities to probe the Earth and climate system more reliably and at finer scale. We summarize the advances that have underpinned this revised set of radiocarbon calibration curves, survey the broad scientific landscape where additional detail on past 14C provides insight, and identify open challenges for the future.
  •  
16.
  • Herbst, K., et al. (författare)
  • The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C
  • 2017
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 122:1, s. 23-34
  • Tidskriftsartikel (refereegranskat)abstract
    • With Voyager1 crossing the outer boundary of our solar system at the end of 2012, for the first time in the instrumental era an unmodulated local interstellar spectrum (LIS) at galactic particle energies below ~500 MeV has been measured. On the basis of these as well as Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) and Alpha Magnetic Spectrometer (AMS02) measurements, most recently, three new LIS models have been proposed in the literature. In this study we compare the newest LIS models to previously most often used ones. Thereby, we investigate and discuss the influence of these LIS models on the terrestrial production rates of the cosmogenic radionuclides 10Be and 14C, which are produced due to the interaction of galactic and solar cosmic rays with atmospheric constituents. After being transported within the atmosphere they are preserved in natural archives such as, e.g., ice sheets or tree rings, forming a unique tool to study the solar modulation of thousands of years back in time. To parameterize the heliospheric modulation we apply the force-field approximation for the individual LIS models from which LIS-dependent solar modulation parameter (ϕ) values are derived. Furthermore, we present updated sets of linear regression functions containing the opportunity to convert the LIS-dependent ϕ values between the investigated LIS models. The results are then applied to a long-term reconstruction of the solar modulation parameter.
  •  
17.
  • Jessen, Catherine, et al. (författare)
  • Climate forced atmospheric CO2 variability in the early Holocene: A stomatal frequency reconstruction
  • 2007
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 1872-6364 .- 0921-8181. ; 57:3-4, s. 247-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region. The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate. (c) 2006 Elsevier B.V. All rights reserved.
  •  
18.
  •  
19.
  • Kokfelt, U., et al. (författare)
  • Diatom blooms and associated vegetation shifts in a subarctic peatland : responses to distant volcanic eruptions?
  • 2016
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 31:7, s. 723-730
  • Tidskriftsartikel (refereegranskat)abstract
    • We test the hypothesis that rich occurrences of diatoms observed at transitions between major peat units representing different vegetation communities in a peat sequence from subarctic northern Sweden reflect responses to acid deposition from the Samalas AD 1257 and Laki AD 1783/1784 eruptions. We observe sudden changes in the mire ecosystem and thereby in the trophic status and biogeochemical cycling of the peatland. Both the eruptions are known to have been associated with significant acid deposition events and climatic anomalies, as recorded in polar ice cores. To test the hypothesis, new chronological analyses and age modelling were applied to existing biogeochemical and biological records from the peat sequence. This approach yielded modelled age ranges of AD 1239-1284 (1s)/AD 1210-1303 (2s) (median: AD 1260) and AD 1674-1795 (1s)/AD 1665-1875 (2s) (median AD 1743), respectively, for the stratigraphic transitions. Hence, the modelled age ranges bracket the ages of the eruptions in question and the hypothesis could therefore not be rejected. Impacts of acid deposition from the eruptions are assumed to have caused instant acidification, vegetation damage, increased nutrient cycling and blooms of opportunistic epiphytic diatoms. In addition, cooling may have contributed to vegetation changes through permafrost inception, frost heave and thereby altered hydrological conditions.
  •  
20.
  • Mekhaldi, Florian, et al. (författare)
  • Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of two large peaks in the atmospheric radiocarbon ((14)C) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric (14)C production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved (10)Be measurements from both Arctic and Antarctic ice cores. Using ice core (36)Cl data in pair with (10)Be, we further show that these solar events were characterized by a very hard energy spectrum with high fluxes of solar protons with energy above 100 MeV. These results imply that the larger of the two events (AD 774/5) was at least five times stronger than any instrumentally recorded solar event. Our findings highlight the importance of studying the possibility of severe solar energetic particle events.
  •  
21.
  • Mekhaldi, F., et al. (författare)
  • The Signal of Solar Storms Embedded in Cosmogenic Radionuclides : Detectability and Uncertainties
  • 2021
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The threat that solar storms pose to our ever-modernizing society has gathered significant interest in the recent past. This is partly due to the discoveries of large peaks in the content of cosmogenic radionuclides such as radiocarbon (14C) in tree rings and beryllium-10 (10Be) and chlorine-36 (36Cl) in ice cores that were linked to extreme solar storms dated to the past millennia. To better assess the threat that they represent, we need to better quantify the relationship between their energy spectrum and their magnitude with respect to the content of the radionuclides that we measure in environmental archives such as ice cores. Here, we model the global production rate that the 59 largest particle storms coming from the Sun have induced for 10Be, 14C, and 36Cl during the past 70 years. We also consider the deposition flux in 10Be and 36Cl over the high latitudes where all Greenland ice cores are located. Our analysis shows that it is unlikely that any recent solar particle event can be detected in 10Be from ice cores. By relating these values to empirical data from ice cores, we are able to quantify different detection limits and uncertainties for 10Be and 36Cl. Due to different sensitivities to solar energetic particles, we assess that 10Be may only be suitable to detect a limited number of extreme solar storms, while 36Cl is suitable to detect any extreme particle event. This implies that the occurrence-rate estimates of extreme solar storms, based mainly on 14C and 10Be, relate to a small population of potential events.
  •  
22.
  • Miyake, F., et al. (författare)
  • A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 48:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual 14C data in tree rings is an outstanding proxy for uncovering extreme solar energetic particle (SEP) events in the past. Signatures of extreme SEP events have been reported in 774/775 CE, 992/993 CE, and ∼660 BCE. Here, we report another rapid increase of 14C concentration in tree rings from California, Switzerland, and Finland around 5410 BCE. These 14C data series show a significant increase of ∼6‰ in 5411–5410 BCE. The signature of 14C variation is very similar to the confirmed three SEP events and points to an extreme short-term flux of cosmic ray radiation into the atmosphere. The rapid 14C increase in 5411/5410 BCE rings occurred during a period of high solar activity and 60 years after a grand 14C excursion during 5481–5471 BCE. The similarity of our 14C data to previous events suggests that the origin of the 5410 BCE event is an extreme SEP event.
  •  
23.
  • Muscheler, R. (författare)
  • 10Be and Cosmogenic Radionuclides in Ice Cores
  • 2013
  • Ingår i: Encyclopedia of Quaternary Science : Second Edition - Second Edition. - 9780444536426 - 9780444536433 ; , s. 353-360
  • Bokkapitel (refereegranskat)abstract
    • This article summarizes the processes that are responsible for cosmogenic radionuclide variations in ice cores and the results that can be inferred from these records. The article starts with the production in the atmosphere caused by the influx of galactic cosmic ray particles and its modulation by the solar and geomagnetic fields. Subsequently, the geochemical behavior of cosmogenic radionuclides and the depositional processes are reviewed. The article ends with some of the most important applications that include solar activity and geomagnetic field reconstructions, the problems and prospects of in situ production, the use of cosmogenic radionuclides for dating and correlation, investigations regarding atmospheric circulation, accumulation rate and depositional processes, and the sun-climate link.
  •  
24.
  • Muscheler, R, et al. (författare)
  • Climate - How unusual is today's solar activity?
  • 2005
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 436:7050, s. 3-4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
25.
  • Muscheler, R., et al. (författare)
  • Constraints on long-term changes in solar activity from the range of variability of cosmogenic radionuclide records
  • 2011
  • Ingår i: Astrophys. Space Sci. Trans.. - : Copernicus GmbH. - 1810-6536. ; 7:3, s. 355-364
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a variety of different cosmogenicradionuclide-based reconstructions of solar activity varia-tions for the past. Especially the longer-term changes andthe absolute levels of past solar activity are uncertain as it isillustrated by the differences between these reconstructions.On the one hand there are differences between10Be and14Crecords that are commonly used as proxies for the varying so-lar modulation of galactic cosmic rays. On the other hand es-timates of past changes in the geomagnetic shielding also in-clude relatively large uncertainties. Here, we concentrate onvariations in cosmogenic radionuclide records on time scalesof 50 to 500 yr. We show that these are to a large extentindependent of the geomagnetic field intensity. The rangeof variability of cosmogenic radionuclide records allows usto set constraints about long-term changes in solar activity.These records indicate that present solar activity levels werereached or exceeded regularly in the past
  •  
26.
  •  
27.
  • Muscheler, R, et al. (författare)
  • The cosmic ray clock during the Younger Dryas cold period clues about climate forcing and the timing of climate change : clues about climate forcing and the timing of climate change
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • The last cold spell of the last deglaciation, the Younger Dryas period, serves as the prime example for rapid climate change induced by ocean circulation changes. However, the detailed processes behind this cold event are far from being satisfactorily understood. Although, the oceanic involvement in this climate deterioration is not disputed, there are various speculations about mechanisms that could have triggered and terminated it. Here we present 10Be data from the GRIP ice core around the transition from the Bölling/Alleröd warm period into the Younger Dryas cold period. The data provide a high-resolution cosmic ray signal that can be used to synchronize different radionuclide records and the connected climate reconstructions. This approach can lead to robust results about synchronous and non-synchronous climate changes at different locations, insights into the possible processes behind the changes and also the prospect of an improved 14C calibration beyond the Holocene period.
  •  
28.
  •  
29.
  • Palmer, Jonathan G., et al. (författare)
  • Changes in El Niño – Southern Oscillation (ENSO) conditions during the Greenland Stadial 1 (GS-1) chronozone revealed by New Zealand tree-rings
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 153, s. 139-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The warming trend at the end of the last glacial was disrupted by rapid cooling clearly identified in Greenland (Greenland Stadial 1 or GS-1) and Europe (Younger Dryas Stadial or YD). This reversal to glacial-like conditions is one of the best known examples of abrupt change but the exact timing and global spatial extent remain uncertain. Whilst the wider Atlantic region has a network of high-resolution proxy records spanning GS-1, the Pacific Ocean suffers from a scarcity of sub-decadally resolved sequences. Here we report the results from an investigation into a tree-ring chronology from northern New Zealand aimed at addressing the paucity of data. The conifer tree species kauri (Agathis australis) is known from contemporary studies to be sensitive to regional climate changes. An analysis of a ‘historic’ 452-year kauri chronology confirms a tropical-Pacific teleconnection via the El Niño – Southern Oscillation (ENSO). We then focus our study on a 1010-year sub-fossil kauri chronology that has been precisely dated by comprehensive radiocarbon dating and contains a striking ring-width downturn between ∼12,500 and 12,380 cal BP within GS-1. Wavelet analysis shows a marked increase in ENSO-like periodicities occurring after the downturn event. Comparison to low- and mid-latitude Pacific records suggests a coherency with ENSO and Southern Hemisphere atmospheric circulation change during this period. The driver(s) for this climate event remain unclear but may be related to solar changes that subsequently led to establishment and/or increased expression of ENSO across the mid-latitudes of the Pacific, seemingly independent of the Atlantic and polar regions.
  •  
30.
  • Svensson, A., et al. (författare)
  • A 60 000 year Greenland stratigraphic ice core chronology
  • 2008
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9332. ; 4:1, s. 47-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9 +/- 1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4 +/- 1.2 ka b2k, and the onset of GI-17 at 59.4 +/- 1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40-60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.
  •  
31.
  • Svensson, Anders, et al. (författare)
  • Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:4, s. 1565-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12-60ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.
  •  
32.
  • Turney, Chris S M, et al. (författare)
  • Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.
  •  
33.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy