SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mustajärvi Lukas) "

Sökning: WFRF:(Mustajärvi Lukas)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ek, Caroline, et al. (författare)
  • Using Compound-Specific and Bulk Stable Isotope Analysis for Trophic Positioning of Bivalves in Contaminated Baltic Sea Sediments
  • 2018
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:8, s. 4861-4868
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable nitrogen isotopes (delta N-15) are used as indicators of trophic position (TP) of consumers. Deriving TP from delta N-15 of individual amino acids (AAs) is becoming popular in ecological studies, because of lower uncertainty than TP based on bulk delta N-15 (TPbulk). This method would also facilitate biomagnification studies provided that isotope fractionation is unaffected by toxic exposure. We compared TPAA and TPbulk estimates for a sediment-dwelling bivalve from two coastal sites, a pristine and a contaminated. Chemical analysis of PCB levels in mussels, sediments, and pore water confirmed the expected difference between sites. Both methods, but in particular the TPAA underestimated the actual TP of bivalves. Using error propagation, the total uncertainty related to the analytical precision and assumptions in the TP calculations was found to be similar between the two methods. Interestingly, the significantly higher intercept for the regression between T-AA, and TPbulk in the contaminated site compared to the pristine site indicates a higher deamination rate due to detoxification as a result of chronic exposure and a higher N-15 fractionation. Hence, there is a need for controlled experiments on assumptions underlying amino acid-specific stable isotope methods in food web and bimagnification studies.
  •  
2.
  •  
3.
  • Mustajärvi, Lukas, 1984- (författare)
  • Contaminated sediments: Methods to assess release and toxicity of organic chemical mixtures
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Bottom sediments around the world store large amounts of legacy hydrophobic organic contaminants (HOCs), forming mixtures of unknown chemical composition. Primary emissions to the environment of many HOCs have been reduced as a consequence of regulation. However, HOCs may be released from the sediments to water and biota, and there is therefore a risk of negative effects on local ecosystems. The activity of benthic organisms can enhance the sediment-to-water flux of HOCs, a process called bioturbation. Few in situ assessments of the sediment-to-water flux are available in the scientific literature, and the effect of bioturbation on the sediment-to-water flux of HOCs has not been studied in the field. Thus, there is a need to improve in situ methods for direct determination of sediments as a source of HOCs to water, and thereby include the effect of bioturbation. In Paper I, a benthic flow-through chamber was developed for environmentally realistic in situ assessments of the sediment-to-water flux. In Paper II, the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) was assessed using the flow-through chamber at four sites on the Swedish Baltic Sea coast. The sediments at all four sites acted as sources of PAHs to water. In the same study, potential effects of bioturbation, with an increase of the sediment-to-water flux by up to one order of magnitude, were observed at sites with bioturbating organisms. In the past, assessing the toxicity of HOCs has been challenging due to difficulties in maintaining stable exposure concentrations of the test chemical. In Paper III, a passive dosing method, where the test chemical partitions from a polymer (silicone) to the aquatic exposure medium, was developed and tested for chronic exposure. A stable exposure concentration could be maintained, and the chronic toxicity to the sediment-dwelling harpacticoid Nitocra spinipes of chronic exposure to triclosan was assessed in a 6-week population development test. In Paper IV, a passive sampling and dosing method was developed and used to assess the toxicity of an environmental chemical mixture of bioavailable sediment-associated HOCs transferred from a contaminated sediment to the laboratory-based bioassay. The passive sampling and dosing method can be used to assess the toxicity of environmental mixtures of chemicals at environmentally realistic concentrations to which ecosystems are constantly exposed.
  •  
4.
  • Mustajärvi, Lukas, et al. (författare)
  • How Important is Bioturbation for Sediment-to-Water Flux of Polycyclic Aromatic Hydrocarbons in the Baltic Sea?
  • 2019
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 38:8, s. 1803-1810
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study a recently developed benthic flow-through chamber was used to assess the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) at 4 sites on the Swedish Baltic Sea coast. The flow-through chamber allows for assessment of the potential effect of bioturbation on the sediment-to-water flux of hydrophobic organic contaminants. The sediments at the 4 investigated sites have both varying contamination degree and densities of bioturbating organisms. The flux of individual PAHs measured with the flow-through chamber ranged between 21 and 510, 11 and 370, 3 and 9700, and 62 and 2300 ng m(-2) d(-1) for the 4 sites. To assess the potential effect of bioturbation on the sediment-to-water flux, 3 flow-through and closed chambers were deployed in parallel at each site. The activity of benthic organisms is attenuated or halted because of depletion of oxygen in closed benthic chambers. Therefore, the discrepancy in flux measured with the 2 different chamber designs was used as an indication of a possible effect of bioturbation. A potential effect of bioturbation on the sediment-to-water flux by a factor of 3 to 55 was observed at sites with a high density of bioturbating organisms (e.g., Marenzelleria spp., Monoporeia affinis, and Macoma balthica of approximately 860-1200 individuals m(-2)) but not at the site with much lower organism density (<200 individuals m(-2)). One site had a high organism density and a low potential effect of bioturbation, which we hypothesize to be caused by the dominance of oligochaetes/polychaetes at this site because worms (Marenzelleria spp.) reach deeper into the sediment than native crustaceans and mollusks.
  •  
5.
  • Mustajärvi, Lukas, et al. (författare)
  • In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants
  • 2017
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 231, s. 854-862
  • Tidskriftsartikel (refereegranskat)abstract
    • Contaminated sediment can release hydrophobic organic contaminants (HOCs) and thereby act as a secondary source of primarily legacy hazardous substances to the water column. There is therefore a need for assessments of the release of HOCs from contaminated sediment for prioritization of management actions. In situ assessment of HOC sediment-to-water flux is currently done with (closed) benthic flux chambers, which have a sampling time exceeding one month. During this time, the water inside the chamber is depleted of oxygen and the effect of bioturbation on the sediment-to-water release of HOCs is largely ignored. Here we present a novel benthic flux chamber, which measures sediment-to-water flux of legacy HOCs within days, and includes the effect of bioturbation since ambient oxygen levels inside the chamber are maintained by continuous pumping of water through the chamber. This chamber design allows for sediment-to-water flux measurements under more natural conditions. The chamber design was tested in a contaminated Baltic Sea bay. Measured fluxes were 62–2300 ng m−2 d−1 for individual polycyclic aromatic hydrocarbons (PAHs), and 5.5–150 ng m−2 d−1 for polychlorinated biphenyls (PCBs). These fluxes were 3–23 times (PAHs) and 12–74 times (PCBs) higher than fluxes measured with closed benthic chambers deployed in parallel at the same location. We hypothesize that the observed difference in HOC flux between the two chamber designs are partly an effect of bioturbation. This hypothesized effect of bioturbation was in accordance with literature data from experimental studies.
  •  
6.
  • Mustajärvi, Lukas, et al. (författare)
  • Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing
  • 2017
  • Ingår i: Environmental Science. - 2050-7887 .- 2050-7895. ; 19:11, s. 1404-1413
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose–response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
  •  
7.
  •  
8.
  • Nybom, Inna, 1984-, et al. (författare)
  • Water column organic carbon composition as driver for water-sediment fluxes of hazardous pollutants in a coastal environment
  • 2024
  • Ingår i: Journal of Hazardous Materials. - 0304-3894 .- 1873-3336. ; 465
  • Tidskriftsartikel (refereegranskat)abstract
    • The environmental fate of hazardous hydrophobic pollutants in the marine environment is strongly influenced by organic carbon (OC) cycling. As an example, the seasonality in primary production impacts both water column OC quantity and quality, which may influence pollutant mass transport from the water column to the sediment. This study aims to better understand the role of water column OC variability for the fate of pollutants in a near-coastal area. We conducted an in situ sampling campaign in the coastal Baltic Proper during two seasons, summer and autumn. We used polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as model compounds, as they represent a wide range in physicochemical properties and are ubiquitous in the environment. Freely dissolved, and OC-bound concentrations were studied in the water column and surface sediment. We found stronger sorption of pollutants to suspended particulate matter (SPM) during the summer compared to the autumn (average 0.6 and 0.9 log unit higher particle-water partition coefficients during summer for PAHs and PCBs). Our data suggest that stronger sorption mirrors a compositional change of the OC towards higher contribution of labile OC during the summer, characterized by two times higher fatty acid and 24% higher dicarboxylic acids in SPM during summer. High concentrations of OC in the water column during the autumn resulted in increased SPM-mediated sinking fluxes of pollutants. Our results suggest that future changes in primary production are prone to influence the bioavailability and mobility of pollutants in costal zones, potentially affecting the residence time of these hazardous substances in the circulating marine environment.
  •  
9.
  • Ribbenstedt, Anton, et al. (författare)
  • Passive dosing of triclosan in multigeneration tests with copepods – stable exposure concentrations and effects at the low μg/L range
  • 2017
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 36:5, s. 1254-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecotoxicity testing is a crucial component of chemical risk assessment. Still, due to methodological difficulties related to controlling exposure concentrations over time, data on long-term effects of organic chemicals at low concentrations are limited. The aim of the present study was, therefore, to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-wk multigeneration population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water) was 10466 +/- 1927. A population development test was conducted at 3 concentration levels of triclosan that were measured to be 3 mu g/L to 5 mu g/L, 7 mu g/L to 11 mu g/L and 16 mu g/L to 26 mu g/L. The results demonstrate that passive dosing is applicable for long-term ecotoxicity testing of organic chemicals, including during significant growth of the test organism population. Shifts in the demographic structure of the population during exposure suggest the most severe effects were exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. The results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment because even the most sensitive endpoint was not significant until after 7 d of exposure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy