SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nagao Mototsugu) "

Sökning: WFRF:(Nagao Mototsugu)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barghouth, Mohammad, et al. (författare)
  • The structure of insulin granule core determines secretory capacity being reduced in type-2 diabetes
  • 2022
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Exocytosis in excitable cells is essential for their physiological functions. Although the exocytotic machinery controlling cellular secretion has been well investigated, the function of the vesicular cargo, i.e. secretory granular content remains obscure. Here we combine dSTORM imaging and single-domain insulin antibody, to dissect the in situ structure of insulin granule cores (IGCs) at nano level. We demonstrate that the size and shape of the IGCs can be regulated by the juxta-granular molecules Nucleobindin-2 and Enolase-1, that further contribute to the stimulated insulin secretion. IGCs located at the plasma membrane are larger than those in the cytosol. The IGCs size is decreased by ∼20% after glucose stimulation due to the release of the peripheral part of IGCs through incomplete granule fusion. Importantly, the reduction of the IGCs size is also observed in non-stimulatory pancreatic β-cells from diabetic db/db mice, Akita (Ins2+/-) mice and human Type-2 diabetic donors, in accordance with impaired secretion. These findings overall highlight the structure of exocytotic insulin cores as a novel modality amenable to targeting in the stimulated exocytosis in β-cells with impaired insulin secretion.Competing Interest StatementThe authors have declared no competing interest.
  •  
2.
  • Esguerra, Jonathan L.S., et al. (författare)
  • Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 32, s. 160-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: A widely recognized metabolic side effect of glucocorticoid (GC) therapy is steroid-induced diabetes mellitus (DM). However, studies on the molecular basis of GC-induced pancreatic beta cell dysfunction in human beta cells are lacking. The significance of non-coding RNAs in various cellular processes is emerging. In this study, we aimed to show the direct negative impact of GC on beta cell function and elucidate the role of riborepressor GAS5 lincRNA in the GC signaling pathway in human pancreatic beta cells. Methods: Patients undergoing two weeks of high-dose prednisolone therapy were monitored for C-peptide levels. Human pancreatic islets and the human beta cell line EndoC-βH1 were incubated in pharmacological concentrations of dexamethasone. The GAS5 level was modulated using anti-sense LNA gapmeR or short oligonucleotides with GAS5 HREM (hormone response element motif). Immunoblotting and/or real-time PCR were used to assess changes in protein and RNA expression, respectively. Functional characterization included glucose-stimulated insulin secretion and apoptosis assays. Correlation analysis was performed on RNAseq data of human pancreatic islets. Results: We found reduced C-peptide levels in patients undergoing high-dose GC therapy. Human islets and the human beta cell line EndoC-βH1 exposed to GC exhibited reduced insulin secretion and increased apoptosis. Concomitantly, reduced expression of important beta cell transcription factors, PDX1 and NKX6-1, as well as exocytotic protein SYT13 were observed. The expression of the glucocorticoid receptor was decreased, while that of serum and glucocorticoid-regulated kinase 1 (SGK1) was elevated. The expression of these genes was found to significantly correlate with GAS5 in human islet transcriptomics data. Increasing GAS5 levels using GAS5 HREM alleviated the inhibitory effects of dexamethasone on insulin secretion. Conclusions: The direct adverse effect of glucocorticoid in human beta cell function is mediated via important beta cell proteins and components of the GC signaling pathway in an intricate interplay with GAS5 lincRNA, a potentially novel therapeutic target to counter GC-mediated beta cell dysfunction.
  •  
3.
  • Esguerra, Jonathan L.S., et al. (författare)
  • MicroRNAs in islet hormone secretion
  • 2018
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902. ; 20:Suppl 2, s. 11-19
  • Forskningsöversikt (refereegranskat)abstract
    • Pancreatic islet hormone secretion is central in the maintenance of blood glucose homeostasis. During development of hyperglycaemia, the β-cell is under pressure to release more insulin to compensate for increased insulin resistance. Failure of the β-cells to secrete enough insulin results in type 2 diabetes (T2D). MicroRNAs (miRNAs) are short non-coding RNA molecules suitable for rapid regulation of the changes in target gene expression needed in β-cell adaptations. Moreover, miRNAs are involved in the maintenance of α-cell and β-cell phenotypic identities via cell-specific, or cell-enriched expression. Although many of the abundant miRNAs are highly expressed in both cell types, recent research has focused on the role of miRNAs in β-cells. It has been shown that highly abundant miRNAs, such as miR-375, are involved in several cellular functions indispensable in maintaining β-cell phenotypic identity, almost acting as “housekeeping genes” in the context of hormone secretion. Despite the abundance and importance of miR-375, it has not been shown to be differentially expressed in T2D islets. On the contrary, the less abundant miRNAs such as miR-212/miR-132, miR-335, miR-130a/b and miR-152 are deregulated in T2D islets, wherein the latter three miRNAs were shown to play key roles in regulating β-cell metabolism. In this review, we focus on β-cell function and describe miRNAs involved in insulin biosynthesis and processing, glucose uptake and metabolism, electrical activity and Ca2+-influx and exocytosis of the insulin granules. We present current status on miRNA regulation in α-cells, and finally we discuss the involvement of miRNAs in β-cell dysfunction underlying T2D pathogenesis.
  •  
4.
  • Nagao, Mototsugu, et al. (författare)
  • Diagnostic potential of miR-483 family for IGF-II producing non-islet cell tumor hypoglycemia
  • 2021
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 184:1, s. 41-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: In insulin-like growth factor II (IGF-II) producing non-islet cell tumor hypoglycemia (NICTH), high molecular weight forms of IGF-II (big IGF-II) are produced as a cause of spontaneous hypoglycemia. MicroRNA (miRNA)-483 family, encoded in an intron lesion of IGF2 gene, is suggested to be co-expressed with IGF-II. Here, we tested whether serum miR-483-5p and -3p levels are associated with the presence of big IGF-II in NICTH. Design: Serum samples from patients who were suspected to have IGF-II producing NICTH (n = 42) were tested. MiR-483-5p and -3p levels were evaluated using quantitative PCR. IGF-II level was analyzed using ELISA. The presence of big IGF-II was identified by Western blotting. Results: Big IGF-II was detected in the sera of 32 patients. MiR-483-5p (P = 0.0015) and -3p (P = 0.027) levels were significantly higher in sera with big IGF-II (n = 32) than in those without (n = 10), whereas serum IGF-II level (P = 0.055) was not significantly different between the groups. The median serum concentration of miR-483-5p was ~10 times higher than that of miR-483-3p. Although a strong correlation was observed between the two miRNAs (r = 0.844, P < 0.0001), but neither of which was correlated with serum IGF-II level. The areas under the receiver operating characteristic curves of miR-483-5p (0.853) and -3p (0.722) were higher than that of IGF-II (0.694) for detecting the presence of big IGF-II. Conclusion: The associations of serum miR-483-5p and -3p levels with the presence of big IGF-II suggest the diagnostic potential of these miRNAs for IGF-II producing NICTH.
  •  
5.
  • Nagao, Mototsugu, et al. (författare)
  • Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in β-Cells
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:6, s. 1193-1205
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a risk factor for type 2 diabetes (T2D); however, not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from donors with T2D and non-T2D (ND), especially obese donors (BMI ≥30 kg/m2). Islets from obese donors with T2D had reduced insulin secretion, decreased β-cell exocytosis, and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis, and reduced granule docking. This was accompanied by reduced expression of the exocytotic proteins SNAP25, STXBP1, and VAMP2, likely because CD36 induced downregulation of the insulin receptor substrate (IRS) proteins, suppressed the insulin-signaling phosphatidylinositol 3-kinase/AKT pathway, and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line EndoC-βH1 increased IRS1 and exocytotic protein levels, improved granule docking, and enhanced insulin secretion. Our results demonstrate that β-cells from obese donors with T2D have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.
  •  
6.
  • Nagao, Mototsugu, et al. (författare)
  • Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells
  • 2022
  • Ingår i: Diabetology International. - : Springer Science and Business Media LLC. - 2190-1678 .- 2190-1686. ; 13:3, s. 471-479
  • Forskningsöversikt (refereegranskat)abstract
    • The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed “stimulus-secretion coupling”. The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
  •  
7.
  • Nagao, Mototsugu, et al. (författare)
  • Selectively Bred Diabetes Models : GK Rats, NSY Mice, and ON Mice
  • 2020
  • Ingår i: Animal Models of Diabetes. Methods in Molecular Biology. - New York, NY : Springer US. - 1940-6029. - 9781071603857 - 9781071603840 ; 2128, s. 25-54
  • Bokkapitel (refereegranskat)abstract
    • The polygenic background of selectively bred diabetes models mimics the etiology of type 2 diabetes. So far, three different rodent models (Goto-Kakizaki rats, Nagoya-Shibata-Yasuda mice, and Oikawa-Nagao mice) have been established in the diabetes research field by continuous selective breeding for glucose tolerance from outbred rodent stocks. The origin of hyperglycemia in these rodents is mainly insulin secretion deficiency from the pancreatic β-cells and mild insulin resistance in insulin target organs. In this chapter, we summarize backgrounds and phenotypes of these rodent models to highlight their importance in diabetes research. Then, we introduce experimental methodologies to evaluate β-cell exocytosis as a putative common defect observed in these rodent models.
  •  
8.
  • Nagao, Mototsugu, et al. (författare)
  • Selectively bred rodent models for studying the etiology of type 2 diabetes : Goto-Kakizaki rats and Oikawa-Nagao mice
  • 2023
  • Ingår i: Endocrine Journal. - 0918-8959. ; 70:1, s. 19-30
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is a polygenic disease and studies to understand the etiology of the disease have required selectively bred animal models with polygenic background. In this review, we present two models; the Goto-Kakizaki (GK) rat and the Oikawa-Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mouse. The GK rat was developed by continuous selective breeding for glucose tolerance from the outbred Wistar rat around 50 years ago. The main cause of spontaneous hyperglycemia in this model is insulin secretion deficiency from pancreatic β-cells and mild insulin resistance in insulin target organs. A disadvantage of the GK rat is that environmental factors have not been considered in the selective breeding. Hence, the GK rat may not be suitable for elucidating predisposition to diabetes under certain environmental conditions, such as a high-fat diet. Therefore, we recently established two mouse lines with different susceptibilities to dietinduced diabetes, which are prone and resistant to the development of diabetes, designated as the ON-DP and ON-DR mouse, respectively. The two ON mouse lines were established by continuous selective breeding for inferior and superior glucose tolerance after high-fat diet feeding in hybrid mice of three inbred strains. Studies of phenotypic differences between ON-DP and ON-DR mice and their underlying molecular mechanisms will shed light on predisposing factors for the development of T2D in the modern obesogenic environment. This review summarizes the background and the phenotypic differences and similarities of GK rats and ON mice and highlights the advantages of using selectively bred rodent models in diabetes research.
  •  
9.
  • Nicholas, Lisa M, et al. (författare)
  • Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 63:2, s. 324-337
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Obesity during pregnancy increases offspring type 2 diabetes risk. Given that nearly half of women of child-bearing age in many populations are currently overweight/obese, it is key that we improve our understanding of the impact of the in utero/early life environment on offspring islet function. Whilst a number of experimental studies have examined the effect of maternal obesity on offspring islet architecture and/or function, it has not previously been delineated whether these changes are independent of other confounding risk factors such as obesity, postnatal high-fat-feeding and ageing. Thus, we aimed to study the impact of exposure to maternal obesity on offspring islets in young, glucose-tolerant male and female offspring.METHODS: Female C57BL/6J mice were fed ad libitum either chow or obesogenic diet prior to and throughout pregnancy and lactation. Offspring were weaned onto a chow diet and remained on this diet until the end of the study. An IPGTT was performed on male and female offspring at 7 weeks of age. At 8 weeks of age, pancreatic islets were isolated from offspring for measurement of insulin secretion and content, mitochondrial respiration, ATP content, reactive oxygen species levels, beta and alpha cell mass, granule and mitochondrial density (by transmission electron microscopy), and mRNA and protein expression by real-time RT-PCR and Western blotting, respectively.RESULTS: Glucose tolerance was similar irrespective of maternal diet and offspring sex. However, blood glucose was lower (p < 0.001) and plasma insulin higher (p < 0.05) in female offspring of obese dams 15 min after glucose administration. This was associated with higher glucose- (p < 0.01) and leucine/glutamine-stimulated (p < 0.05) insulin secretion in these offspring. Furthermore, there was increased mitochondrial respiration (p < 0.01) and density (p < 0.05) in female offspring of obese dams compared with same-sex controls. Expression of mitochondrial and nuclear-encoded components of the electron transport chain, L-type Ca2+ channel subtypes that play a key role in stimulus-secretion coupling [Cacna1d (p < 0.05)], and oestrogen receptor α (p < 0.05) was also increased in islets from these female offspring of obese dams. Moreover, cleaved caspase-3 expression and BAX:Bcl-2 were decreased (p < 0.05) reflecting reduced susceptibility to apoptosis. In contrast, in male offspring, glucose and leucine/glutamine-stimulated insulin secretion was comparable between treatment groups. There was, however, compromised mitochondrial respiration characterised by decreased ATP synthesis-driven respiration (p < 0.05) and increased uncoupled respiration (p < 0.01), reduced docked insulin granules (p < 0.001), decreased Cacna1c (p < 0.001) and Cacna1d (p < 0.001) and increased cleaved caspase-3 expression (p < 0.05).CONCLUSIONS/INTERPRETATION: Maternal obesity programs sex differences in offspring islet function. Islets of female but not male offspring appear to be primed to cope with a nutritionally-rich postnatal environment, which may reflect differences in future type 2 diabetes risk.
  •  
10.
  • Nilsson, Oktawia, et al. (författare)
  • Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion
  • 2020
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439. ; 1866:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase of plasma levels of high-density lipoproteins and Apolipoprotein A-I (ApoA-I), its main protein component, has been shown to have a positive action on glucose disposal in type 2 diabetic patients. The current study investigates the unexplored function of ApoA-I to prime beta cells for improved insulin secretion. INS-1E rat clonal beta cells as well as isolated murine islets were used to study the effect of ApoA-I on responsiveness of the beta cells to high glucose challenge. Confocal and transmission electron microscopy were used to dissect ApoA-I mechanisms of action. Chemical endocytosis blockers were used to understand the role of ApoA-I internalization in mediating its positive effect. Pre-incubation of beta cells and isolated murine islets with ApoA-I augmented glucose stimulated insulin secretion. This effect appeared to be due to an increased reservoir of insulin granules at the cell membrane, as confirmed by confocal and transmission electron microscopy. Moreover, ApoA-I induced pancreatic and duodenal homeobox 1 (PDX1) shuttling from the cytoplasm to the nucleus, with the subsequent increase in the proinsulin processing enzyme protein convertase 1 (PC1/3). Finally, the blockade of ApoA-I endocytosis in beta cells resulted in a loss of ApoA-I positive action on insulin secretion. The proposed mechanisms of the phenomenon here described include ApoA-I internalization into beta cells, PDX1 nuclear translocation, and increased levels of proinsulin processing enzymes. Altogether, these events lead to an increased number of insulin granules.
  •  
11.
  • Ofori, Jones, et al. (författare)
  • Human Islet MicroRNA-200c Is Elevated in Type 2 Diabetes and Targets the Transcription Factor ETV5 to Reduce Insulin Secretion
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 71:2, s. 275-284
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) are part of deregulated insulin secretion in type 2 diabetes (T2D) development. Rodent models have suggested miR-200c to be involved, but the role and potential as therapeutic target of this miRNA in human islets are not clear. Here we report increased expression of miR-200c in islets from T2D as compared with nondiabetic (ND) donors and display results showing reduced glucose-stimulated insulin secretion in EndoC-βH1 cells overexpressing miR-200c. We identify transcription factor ETV5 as the top rank target of miR-200c in human islets using TargetScan in combination with Pearson correlation analysis of miR-200c and mRNA expression data from the same human donors. Among other targets were JAZF1, as earlier shown in miR-200 knockout mice. Accordingly, linear model analysis of ETV5 and JAZF1 gene expression showed reduced expression of both genes in islets from human T2D donors. Western blot analysis confirmed the reduced expression of ETV5 on the protein level in EndoC-βH1 cells overexpressing miR-200c, and luciferase assay validated ETV5 as a direct target of miR-200c. Finally, LNA knockdown of miR-200c increased glucose-stimulated insulin secretion in islets from T2D donors approximately threefold. Our data reveal a vital role of the miR-200c–ETV5 axis in β-cell dysfunction and pathophysiology of T2D.
  •  
12.
  • Ofori, Jones K., et al. (författare)
  • Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes.
  •  
13.
  • Ofori, Jones K, et al. (författare)
  • The highly expressed calcium-insensitive synaptotagmin-11 and synaptotagmin-13 modulate insulin secretion
  • 2022
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 236:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim SYT11 and SYT13, two calcium-insensitive synaptotagmins, are downregulated in islets from type 2 diabetic donors, but their function in insulin secretion is unknown. To address this, we investigated the physiological role of these two synaptotagmins in insulin-secreting cells. Methods Correlations between gene expression levels were performed using previously described RNA-seq data on islets from 188 human donors. SiRNA knockdown was performed in EndoC-beta H1 and INS-1 832/13 cells. Insulin secretion was measured with ELISA. Patch-clamp was used for single-cell electrophysiology. Confocal microscopy was used to determine intracellular localization. Results Human islet expression of the transcription factor PDX1 was positively correlated with SYT11 (p = 2.4e(-10)) and SYT13 (p < 2.2e(-16)). Syt11 and Syt13 both co-localized with insulin, indicating their localization in insulin granules. Downregulation of Syt11 in INS-1 832/13 cells (siSYT11) resulted in increased basal and glucose-induced insulin secretion. Downregulation of Syt13 (siSYT13) decreased insulin secretion induced by glucose and K+. Interestingly, the cAMP-raising agent forskolin was unable to enhance insulin secretion in siSYT13 cells. There was no difference in insulin content, exocytosis, or voltage-gated Ca2+ currents in the two models. Double knockdown of Syt11 and Syt13 (DKD) resembled the results in siSYT13 cells. Conclusion SYT11 and SYT13 have similar localization and transcriptional regulation, but they regulate insulin secretion differentially. While downregulation of SYT11 might be a compensatory mechanism in type-2 diabetes, downregulation of SYT13 reduces the insulin secretory response and overrules the compensatory regulation of SYT11 in a way that could aggravate the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy