SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nalewajko K.) "

Sökning: WFRF:(Nalewajko K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abdalla, H., et al. (författare)
  • Simultaneous observations of the blazar PKS 2155-304 from ultra-violet to TeV energies
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155-304 involving Swift, NuSTAR, Fermi-LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A lepto-hadronic solution was then explored to explain these earlier observational results.
  •  
3.
  • Ackermann, M., et al. (författare)
  • MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 751:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The blazarAO 0235+164 (z=0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to gamma-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the gamma-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R-g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
  •  
4.
  • Hayashida, M., et al. (författare)
  • THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY gamma-RAY OBSERVATIONS IN 2008-2010
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 754:2, s. 114-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present time-resolved broadband observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of isolated flares separated by similar to 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the gamma-ray flaring event by a shift of its location from similar to 1 pc to similar to 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.
  •  
5.
  • Ackermann, M., et al. (författare)
  • FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF GAMMA-RAY OUTBURSTS FROM 3C 454.3 IN 2009 DECEMBER AND 2010 APRIL
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 721:2, s. 1383-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat spectrum radio quasar 3C 454.3 underwent an extraordinary outburst in 2009 December when it became the brightest gamma-ray source in the sky for over 1 week. Its daily flux measured with the Fermi-Large Area Telescope at photon energiesE > 100 MeV reached F-100 = 22 +/- 1 x 10(6) photon cm(-2) s(-1), representing the highest daily flux of any blazar ever recorded in high-energy. -rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated. -ray temporal and spectral properties during these exceptional events are presented and discussed. The main results show flux variability over time scales less than 3 hr and very mild spectral variability with an indication of gradual hardening preceding major flares. The light curves during periods of enhanced activity in 2008 July-August and 2010 December show strong resemblance, with a flux plateau of a few days preceding the major flare. No consistent loop pattern emerged in the. -ray spectral index versus the flux plane as would be expected in acceleration and cooling scenarios. The maximum energy of a photon from 3C 454.3 is approximate to 20 GeV and a minimum Doppler factor of approximate to 13 is derived. The gamma-ray spectrum of 3C 454.3 shows a significant spectral break between approximate to 2 and 3 GeV that is very weakly dependent on the flux state, even when the flux changes by an order of magnitude.
  •  
6.
  • Ackermann, M., et al. (författare)
  • MINUTE-TIMESCALE > 100 MeV gamma-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE
  • 2016
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 824:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2015 June 16, Fermi- LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of similar to 3.6 x 10(-5) photons cm(-2) s(-1), averaged over orbital period intervals. It is historically the highest gamma-ray flux observed from the source, including past EGRET observations, with the gamma-ray isotropic luminosity reaching similar to 10(49) erg s(-1). During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi- LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Gamma) of 35 is necessary to avoid both internal gamma-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, G should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (similar to 5 x 10(-4)). Equipartition requires Gamma as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider. rays originating as synchrotron radiation of gamma e similar to 1.6 x 10(6) electrons, in a magnetic field B similar to 1.3 kG, accelerated by strong electric fields E similar to B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of gamma-rays in hadronic processes.
  •  
7.
  • Hayashida, M., et al. (författare)
  • First minute-scale variability in Fermi -LAT blazar observations during the giant outburst of 3C279 in 2015 June
  • 2017
  • Ingår i: AIP Conference Proceedings. - : American Institute of Physics Inc.. - 0094-243X. - 9780735414563
  • Konferensbidrag (refereegranskat)abstract
    • The Flat Spectrum Radio Quasar 3C 279 underwent several outbursts in the past, having flared with a peak γ-ray flux above 100 MeV (FE>100 MeV) exceeding 10-5 ph cm-2 s-1, in 2013 December, 2014 April, and 2015 June. The 2013 December outburst showed an unusually hard power-law γ-ray spectrum (index∼1.7), and an asymmetric light curve profile with few-hour time scale variability. This could be successfully explained using our second order Fermi acceleration model. The outburst in 2015 June was even more powerful, with FE>100 MeV ∼ 4×10-5 ph cm-2 s-1, the historically highest even when the EGRET era is included. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT, with flux doubling times of less than 5 minutes. In the standard external-Compton scenario with conical jet geometry, the minute-scale variability requires a very high bulk jet Lorentz factor (> 50) and extremely low magnetization even at the jet base (∼ 100RS). However, such a high bulk jet Lorentz factor and low magnetization at the jet base pose challenges to standard models of electromagnetically driven jets. Alternately, we consider a synchrotron origin scenario for the GeV γ-ray outburst, which would work in a magnetically dominated jet. In this contribution, we present observational results of the outbursts in detail and discuss current problems on relativistic jets inferred from γ-ray observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy