SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Narbad A) "

Sökning: WFRF:(Narbad A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Korecka, A, et al. (författare)
  • Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism
  • 2016
  • Ingår i: NPJ biofilms and microbiomes. - : Springer Science and Business Media LLC. - 2055-5008. ; 2, s. 16014-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism—biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR−/−) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR−/− mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR−/− mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR−/− mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR−/− mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.
  •  
2.
  • Duszka, K, et al. (författare)
  • Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 36937-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes.
  •  
3.
  • Arora, Tulika, et al. (författare)
  • Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice
  • 2016
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 5:8, s. 725-730
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet (HFD). Methods: We transformed L. lactis FI5876 with either empty vector (pUK200) or murine GLP-1 expression vector to generate LL-UK200 and LL-GLP1, respectively, and determined their potential to induce insulin secretion by incubating primary islets from wild-type (WT) and GLP-1 receptor knockout (GLP1R-KO) mice with culture supernatant of these strains. In addition, we administered these strains to mice on chow or HFD. At the end of the study period, we measured plasma GLP-1 levels, performed intraperitoneal glucose tolerance and insulin tolerance tests, and determined hepatic expression of the gluconeogenic genes G6pc and Pepck. Results: Insulin release from primary islets of WT but not GLP1R-KO mice was higher following incubation with culture supernatant from LL-GLP1 compared with LL-UK200. In mice on chow, supplementation with LL-GLP1 versus LL-UK200 promoted increased vena porta levels of GLP1 in both WT and GLP1R-KO mice; however, LL-GLP1 promoted improved glucose tolerance in WT but not in GLP1R-KO mice, indicating a requirement for the GLP-1 receptor. In mice on HFD and thus with impaired glucose tolerance, supplementation with LL-GLP1 versus LL-UK200 promoted a pronounced improvement in glucose tolerance together with increased insulin levels. Supplementation with LL-GLP1 versus LL-UK200 did not affect insulin tolerance but resulted in reduced expression of G6pc in both chow and HFD-fed mice. Conclusions: The L. lactis strain genetically modified to produce GLP-1 is capable of stimulating insulin secretion from islets and improving glucose tolerance in mice. (C) 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
4.
  • Vardakou, Maria, et al. (författare)
  • Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora
  • 2008
  • Ingår i: International Journal of Food Microbiology. - : Elsevier BV. - 0168-1605 .- 1879-3460. ; 123:1-2, s. 166-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary supplementation with prebiotics may result in the stimulation of the growth of beneficial bacteria such as lactobacilli and bifidobacteria in the human gastrointestinal tract. The effect of water-unextractable arabinoxylans (WU-AX) derived from wheat on the modulation of gut bacterial composition was investigated using a mixed culture fermentation system. A prebiotic index (PI) score of 2.03 was obtained after addition of 1% (w/v) WU-AX to a pH-controlled stirred anaerobic fermentation vessel. Pretreatment of the WU-AX with endo-β-1,4-xylanase resulted in significantly higher PI value (3.48) indicating that pretreatment provided oligomers that were better utilised by the gut bacteria. The extracellular hydrolytic enzymes xylanase and ferulic acid esterase are both required for bacterial metabolism of WU-AX and both activities were present in supernatants derived from the mixed batch cultures. Addition of the WU-AX substrates to the batch cultures produced several fold increases of bacterial synthesis of both enzymes, and these increases were greater when the WU-AX substrate was pretreated with xylanase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy