SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Navabi Nazanin 1969) "

Sökning: WFRF:(Navabi Nazanin 1969)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Jenny K, 1981, et al. (författare)
  • Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance.
  • 2013
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.
  •  
2.
  • Lindqvist, Madelene, 1982, et al. (författare)
  • Local cytokine and inflammatory responses to candidate vaginal adjuvants in mice.
  • 2009
  • Ingår i: Vaccine. - : Elsevier BV. - 1873-2518 .- 0264-410X. ; 28:1, s. 270-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study was undertaken to explore the correlation of adjuvanticity and local inflammatory response elicited in the murine vagina and the draining lymph nodes following local administration of two candidate vaginal adjuvants, Toll like receptor (TLR) 9 agonist CpG ODN, and a non-TLR targeting molecule alpha-galactosylceramide (alpha-GalCer). Using real-time PCR array analysis, we could show that a group of 13 common cytokine genes are activated in the vagina within 24h after vaginal administration of these adjuvants, including Ccl2, Ccl7, Ccl12, Ccl19, Ccl20, Ccl22, Cxcl1, Cxcl5, Il10 and the Th1-inducing molecules Ifng, Cxcl9, Cxcl10 and Cxcl11. A high degree of inflammation in and damage to the epithelium was exclusively observed in the vagina of the CpG ODN treated mice, which was reversed within 48h. These results indicate that there is a group of common genes that correlate with the adjuvanticity of CpG ODN and alpha-GalCer in the vagina, and that alpha-GalCer induces less of local inflammatory reactions in the murine vagina compared to CpG ODN.
  •  
3.
  • Maiti, Arpan K., et al. (författare)
  • Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFN gamma and TNF alpha induced during Citrobacter rodentium infection
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrobacter rodentium infection is a model for infection with attaching and effacing pathogens, such as enteropathogenic Escherichia coli. The vasoactive intestinal peptide (VIP) has emerged as an anti-inflammatory agent, documented to inhibit Th1 immune responses and successfully treat animal models of inflammation. VIP is also a mucus secretagogue. Here, we found that colonic levels of VIP decrease during murine C. rodentium infection with a similar time dependency as measurements reflecting mitochondrial function and epithelial integrity. The decrease in VIP appears mainly driven by changes in the cytokine environment, as no changes in VIP levels were detected in infected mice lacking interferon gamma (IFN gamma). VIP supplementation alleviated the reduction of activity and levels of mitochondrial respiratory complexes I and IV, mitochondrial phosphorylation capacity, transmembrane potential and ATP generation caused by IFN gamma, TNF alpha and C. rodentium infection, in an in vitro mucosal surface. Similarly, VIP treatment regimens that included the day 5-10 post infection period alleviated decreases in enzyme complexes I and IV, phosphorylation capacity, mitochondrial transmembrane potential and ATP generation as well as increased apoptosis levels during murine infection with C. rodentium. However, VIP treatment failed to alleviate colitis, although there was a tendency to decreased pathogen density in contact with the epithelium and in the spleen. Both in vivo and in vitro, NO generation increased during C. rodentium infection, which was alleviated by VIP. Thus, therapeutic VIP administration to restore the decreased levels during infection had beneficial effects on epithelial cells and their mitochondria, but not on the overall infection outcome.
  •  
4.
  • Maiti, Arpan K., et al. (författare)
  • IL-4 Protects the Mitochondria Against TNF alpha and IFN gamma Induced Insult During Clearance of Infection with Citrobacter rodentium and Escherichia coli
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrobacter rodentium is a murine pathogen that serves as a model for enteropathogenic Escherichia coli. C. rodentium infection reduced the quantity and activity of mitochondrial respiratory complexes I and IV, as well as phosphorylation capacity, mitochondrial transmembrane potential and ATP generation at day 10, 14 and 19 post infection. Cytokine mRNA quantification showed increased levels of IFN gamma, TNF alpha, IL-4, IL-6, and IL-12 during infection. The effects of adding these cytokines, C. rodentium and E. coli were hence elucidated using an in vitro colonic mucosa. Both infection and TNF alpha, individually and combined with IFN gamma, decreased complex I and IV enzyme levels and mitochondrial function. However, IL-4 reversed these effects, and IL-6 protected against loss of complex IV. Both in vivo and in vitro, the dysfunction appeared caused by nitric oxide-generation, and was alleviated by an antioxidant targeting mitochondria. IFN gamma -/- mice, containing a similar pathogen burden but higher IL-4 and IL-6, displayed no loss of any of the four complexes. Thus, the cytokine environment appears to be a more important determinant of mitochondrial function than direct actions of the pathogen. As IFN gamma and TNF alpha levels increase during clearance of infection, the concomitant increase in IL-4 and IL-6 protects mitochondrial function.
  •  
5.
  • Navabi, Nazanin, 1969, et al. (författare)
  • Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.
  •  
6.
  • Navabi, Nazanin, 1969, et al. (författare)
  • Helicobacter pylori Infection Impairs the Mucin Production Rate and Turnover in the Murine Gastric Mucosa
  • 2013
  • Ingår i: Infection and Immunity. - 0019-9567. ; 81:3, s. 829-837
  • Tidskriftsartikel (refereegranskat)abstract
    • To protect the surface of the stomach, the epithelial cells secrete a mucus layer, which is mainly comprised of the MUC5AC mucin. Further protection is provided by a thick glycocalyx on the apical surface of the epithelial cell, with the cell surface mucin MUC1 as a major component. Here, we investigate the production rate and turnover of newly synthesized mucin in mice and analyze the effects of early colonization and chronic infection with H. pylori. Metabolic incorporation of an azido GalNAc analog (GalNAz) was used as a nonradioactive method to perform pulse experiments in the whole animal. First, the subcellular movement of newly synthesized mucin and mucin turnover was determined in uninfected mice. Based on the time line for mucin transport and dissemination, 2, 6, and 12 h after GalNAz injection was selected to collect the stomachs from mice infected with H. pylori strain SS1 during early colonization (7 days) and chronic infection (90 days). The results demonstrated that the speed from the start of glycosylation to the final destination is faster for the membrane-bound mucin to reach the glycocalyx (2 h) than for the secretory mucins to become secreted into the mucus layer (5 h). Furthermore, infection with H. pylori reduces the rate of mucin turnover and decreases the levels of Muc1. Since H. pylori colonizes this mucus niche, the decreased turnover rate indicates that H. pylori creates a more stable and favorable environment for itself by impairing the defense mechanism for clearing the mucosal surface of pathogens by mucus flow.
  •  
7.
  • Navabi, Nazanin, 1969 (författare)
  • Mucus and mucins during gastrointestinal infections
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The gastrointestinal tract is protected by a continuously secreted mucus layer formed by mucin glycoproteins. The mucus layer and mucins change dynamically during infection. The main focus of this thesis was to investigate the changes in mucin and the mucus layer in the gastrointestinal tract during infection with the gastrointestinal pathogens C. rodentium (a mouse model for intestinal A/E pathogens), ETEC and H.pylori. To be able to compare the results from murine studies to the effect of infection in humans, we needed an in vitro mucosal surface to most resemble the in vivo environment. Therefore, we developed a method of culture to create an in vitro model suitable for studies of host-pathogen interactions at the mucosal surface that caused the cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. We investigated the effect of infection with H. pylori on mucin synthesis in vivo. The results of our non-radioactive “pulse” experiments showed H. pylori colonization in the mucus niche of the murine stomach leads to decreased mucin production and secretion rate. H. pylori infection also decreased levels of MUC1 in the mucosa. The effect of C. rodentium infection on the distinct aspects of the mucus layer and mucins was also investigated during this work. Our results in the WT mice demonstrated mucus transcription and secretion are dynamically altered in response to the infection. Furthermore, the clearance of the infection coincides with the reformation of the organized inner mucus layer and an increased mucus thickness, which corresponded with altered ion channel activities. To examine the effect of the cytokine environment on the changes of mucin and mucus layer, we infected WT and IFN-γ-/- mice with C. rodentium that resulted in a vast enhancement of mucus thickness in the IFN-γ-/- mice compared to the WT animals. The effect of individual cytokines was further studied using our in vitro model with and without infection with C. rodentium/ETEC. The outcome demonstrated that changes in the goblet cells, mucin and mucus layer during infection is dependent on the combined impact of the pathogen and cytokines, and that the presence of the Th2 cytokines accelerated the process of mucin synthesis.
  •  
8.
  • Quintana-Hayashi, Macarena P, et al. (författare)
  • Neutrophil Elastase and Interleukin 17 Expressed in the Pig Colon during Brachyspira hyodysenteriae Infection Synergistically with the Pathogen Induce Increased Mucus Transport Speed and Production via Mitogen-Activated Protein Kinase 3
  • 2017
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 85:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Brachyspira hyodysenteriae colonizes the pig colon, resulting in mucoid hemorrhagic diarrhea and mucus layer changes. These changes are characterized by a disorganized mucus structure and massive mucus induction with de novo expression of MUC5AC and increased production of MUC2. To investigate the mechanisms behind this altered mucin environment, we quantified the mRNA levels of mucin pathway genes and factors from the immune system in the colons of infected and control pigs and observed upregulation of neutrophil elastase, SPDEF, FOXA3, MAPK3/ ERK1, IL-17A, IL-1 beta, IL-6, and IL-8 expression. In vitro, colonic mucus-producing mucosal surfaces were treated with these factors along with B. hyodysenteriae infection and analyzed for their effect on mucin production. Neutrophil elastase and infection synergistically induced mucus production and transport speed, and interleukin 17A (IL-17A) also had similar effects, in both the presence and absence of infection. A mitogen-activated protein kinase 3 (MAPK3)/extracellular signal-regulated kinase 1 (ERK1) inhibitor suppressed these effects. Therefore, we suggest that the SPDEF, FOXA3, and MAPK3/ERK1 signaling pathways are behind the transcriptional program regulating mucin biosynthesis in the colon during B. hyodysenteriae infection. In addition to furthering the knowledge on this economically important disease, this mechanism may be useful for the development of therapies aimed at conditions where enhancing mucus production may be beneficial, such as chronic inflammatory disorders of the colon.
  •  
9.
  • Saraiva-Pava, K., et al. (författare)
  • New NCI-N87-derived human gastric epithelial line after human telomerase catalytic subunit over-expression
  • 2015
  • Ingår i: World Journal of Gastroenterology. - : Baishideng Publishing Group Inc.. - 1007-9327. ; 21:21, s. 6526-6542
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To establish a cellular model correctly mimicking the gastric epithelium to overcome the limitation in the study of Helicobacter pylori (H. pylori) infection. METHODS: Aiming to overcome this limitation, clones of the heterogenic cancer-derived NCI-N87 cell line were isolated, by stably-transducing it with the human telomerase reverse-transcriptase (hTERT) catalytic subunit gene. The clones were first characterized regarding their cell growth pattern and phenotype. For that we measured the clones' adherence properties, expression of cell-cell junctions' markers (ZO-1 and E-cadherin) and ability to generate a sustained transepithelial electrical resistance. The gastric properties of the clones, concerning expression of mucins, zymogens and glycan contents, were then evaluated by haematoxylin and eosin staining, Periodic acid Schiff (PAS) and PAS/Alcian Blue-staining, immunocytochemistry and Western blot. In addition, we assessed the usefulness of the hTERT-expressing gastric cell line for H. pylori research, by performing co-culture assays and measuring the IL-8 secretion, by ELISA, upon infection with two H. pylori strains differing in virulence. RESULTS: Compared with the parental cell line, the most promising NCI-hTERT-derived clones (CL5 and CL6) were composed of cells with homogenous phenotype, presented higher relative telomerase activities, better adhesion properties, ability to be maintained in culture for longer periods after confluency, and were more efficient in PAS-reactive mucins secretion. Both clones were shown to produce high amounts of MUC1, MUC2 and MUC13. NCI-hTERT-CL5 mucins were shown to be decorated with blood group H type 2 (BG-H), Lewis-x (Le(x)), Le(y) and Le(a) and, in a less extent, with BG-A antigens, but the former two antigens were not detected in the NCI-hTERT-CL6. None of the clones exhibited detectable levels of MUC6 nor sialylated Le(x) and Le(a) glycans. Entailing good gastric properties, both NCI-hTERT-clones were found to produce pepsinogen-5 and human gastric lipase. The progenitor-like phenotype of NCI-hTERT-CL6 cells was highlighted by large nuclei and by the apical vesicular-like distribution of mucin 5AC and Pg5, supporting the accumulation of mucus-secreting and zymogens-chief mature cells functions. CONCLUSION: These traits, in addition to resistance to microaerobic conditions and good responsiveness to H. pylori co-culture, in a strain virulence-dependent manner, make the NCI-hTERT-CL6 a promising model for future in vitro studies.
  •  
10.
  • Sharba, Sinan, et al. (författare)
  • Interleukin 4 induces rapid mucin transport, increases mucus thickness and quality and decreases colitis and Citrobacter rodentium in contact with epithelial cells
  • 2019
  • Ingår i: Virulence. - : Informa UK Limited. - 2150-5594 .- 2150-5608. ; 10:1, s. 97-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Citrobacter rodentium infection is a murine model for pathogenic intestinal Escherichia coli infection. C. rodentium infection causes an initial decrease in mucus layer thickness, followed by an increase during clearance. We aimed to identify the cause of these changes and to utilize this naturally occurring mucus stimulus to decrease pathogen impact and inflammation. We identified that mucin production and speed of transport from Golgi to secretory vesicles at the apical surface increased concomitantly with increased mucus thickness. Of the cytokines differentially expressed during increased mucus thickness, IFN-gamma and TNF-alpha decreased the mucin production and transport speed, whereas IL-4, IL-13, C. rodentium and E. coli enhanced these aspects. IFN-gamma and TNF-alpha treatment in combination with C. rodentium and pathogenic E. coli infection negatively affected mucus parameters in vitro, which was relieved by IL-4 treatment. The effect of IL-4 was more pronounced than that of IL-13, and in wild type mice, only IL-4 was present. Increased expression of Il-4, Il-4-receptor alpha, Stat6 and Spdef during clearance indicate that this pathway contributes to the increase in mucin production. In vivo IL-4 administration initiated 10 days after infection increased mucus thickness and quality and decreased colitis and pathogen contact with the epithelium. Thus, during clearance of infection, the concomitant increase in IL-4 protects and maintains goblet cell function against the increasing levels of TNF-alpha and IFN-gamma. Furthermore, IL-4 affects intestinal mucus production, pathogen contact with the epithelium and colitis. IL-4 treatment may thus have therapeutic benefits for mucosal healing.
  •  
11.
  • Skoog, Emma C, 1983, et al. (författare)
  • Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells. : Effects of gastric mucins on Helicobacter pylori
  • 2012
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy