SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nejad Mojgan) "

Sökning: WFRF:(Nejad Mojgan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Saulnier, Brian K., et al. (författare)
  • Effect of Dilute Acid Pretreatment and Lignin Extraction Conditions on Lignin Properties and Suitability as a Phenol Replacement in Phenol-Formaldehyde Wood Adhesives
  • 2023
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 71:1, s. 592-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Corn stover was subjected to dilute sulfuric acid pretreatment to assess the impact of pretreatment conditions on lignin extractability, properties, and utility as a phenol replacement in wood phenol-formaldehyde (PF) adhesives. It was identified that both formic acid and NaOH could extract and recover 60-70% of the lignin remaining after pretreatment and enzymatic hydrolysis under the mildest pretreatment conditions while simultaneously achieving reasonable enzymatic hydrolysis yields (> 60%). The availability of reaction sites for the incorporation of lignins into the PF polymer matrix (i.e., unsubstituted phenolic hydroxyl groups) was shown to be strongly impacted by the pretreatment time and the recovery. Finally, a lignin-based wood adhesive was formulated by replacing 100% of the phenol with formic-acid-extracted lignin, which exhibited a dry shear strength exceeding a conventional PF adhesive. These findings suggest that both pretreatment and lignin extraction conditions can be tailored to yield lignins with properties targeted for this co-product application.
  •  
3.
  • Siahkamari, Mohsen, et al. (författare)
  • Lignin-Glyoxal: A Fully Biobased Formaldehyde-Free Wood Adhesive for Interior Engineered Wood Products
  • 2022
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 10:11, s. 3430-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a biobased phenolic adhesive was successfully developed by entirely substituting both petroleum-based phenol and formaldehyde with an unmodified corn stover biorefinery lignin and glyoxal (a biobased dialdehyde), respectively. Lignin-glyoxal resins were synthesized using an alkaline catalyst with a molar ratio of lignin to glyoxal of 1:2. Chemical, thermal, and mechanical properties of the lignin, lignin-based resins, and final adhesives were assessed following appropriate standard test methods. The analysis of lignins and lignin-based resin molar mass was performed using gel permeation chromatography. The lignin-glyoxal resin was found to have a 3-fold higher average molecular weight than the starting lignin, demonstrating the successful integration of lignin into the polymeric resin network. The curing of the formulated adhesives was studied using differential scanning calorimetry and dynamic mechanical analysis. Although the lignin-glyoxal resin had a higher curing temperature (167 °C) than a conventional phenol-formaldehyde resin (142 °C) and the formulated lignin-formaldehyde resin (146 °C), the rate and degree of cure were similar or better than the other two resins. The adhesion strengths of the formulated adhesives were determined using single-lap-joint veneer samples cured according to recommended press parameters for commercial adhesives. The lignin-glyoxal adhesive had a relatively high dry adhesion strength (3.9 MPa), with over 90% wood failure, but failed the wet adhesion test (boiling water test). Although the formulated lignin-glyoxal adhesive failed the boiling water test, it had excellent stability at room temperature water, remaining intact after 1 week during the water immersion test. The high dry adhesion strength makes this class of lignin-based formaldehyde-free adhesives a unique biobased glue for the production of interior grade plywood and oriented strand boards.
  •  
4.
  • Yuan, Zhaoyang, et al. (författare)
  • Effective Biomass Fractionation through Oxygen-Enhanced Alkaline–Oxidative Pretreatment
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:3, s. 1118-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • The high recalcitrance of plant cell walls is an obstacle for effective chemical or biological conversion into renewable chemicals and transportation fuels. Here, we investigated the utilization of both oxygen (O2) and hydrogen peroxide (H2O2) as co-oxidants during alkaline–oxidative pretreatment to improve biomass fractionation and increase enzymatic digestibility. The oxidative pretreatment of hybrid poplar was studied over a variety of conditions. Employing O2 in addition to H2O2 as a co-oxidant during the two-stage alkaline pre-extraction/copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in a substantial improvement in delignification relative to using H2O2 alone during the second-stage Cu-AHP pretreatment, leading to high overall sugar yields even at H2O2 loadings as low as 2% (w/w of the original biomass). The presence of H2O2, however, was both critical and synergistic. Performing analogous reactions in the absence of H2O2 resulted in approximately 25% less delignification and 30% decrease in sugar yields. The lignin isolated from this dual oxidant second stage had high aliphatic hydroxyl group content and reactivity to isocyanate, indicating that it is a promising substrate for the production of polyurethanes. To test the suitability of the isolated lignin as a source of aromatic monomers, the lignin was subjected to a sequential Bobbitt’s salt oxidation followed by a formic acid-catalyzed depolymerization process. Monomer yields of approximately 17% (w/w) were obtained, and the difference in yields was not significant between lignin isolated from our Cu-AHP process with and without O2 as a co-oxidant. Thus, the addition of O2 did not lead to significant lignin crosslinking, a result consistent with the two-dimensional heteronuclear single-quantum coherence NMR spectra of the isolated lignin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy