SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nemet K) "

Sökning: WFRF:(Nemet K)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Willasch, AM, et al. (författare)
  • Myeloablative conditioning for allo-HSCT in pediatric ALL: FTBI or chemotherapy?-A multicenter EBMT-PDWP study
  • 2020
  • Ingår i: Bone marrow transplantation. - : Springer Science and Business Media LLC. - 1476-5365 .- 0268-3369. ; 55:98, s. 1540-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • Although most children with acute lymphoblastic leukemia (ALL) receive fractionated total body irradiation (FTBI) as myeloablative conditioning (MAC) for allogeneic hematopoietic stem cell transplantation (allo-HSCT), it is an important matter of debate if chemotherapy can effectively replace FTBI. To compare outcomes after FTBI versus chemotherapy-based conditioning (CC), we performed a retrospective EBMT registry study. Children aged 2–18 years after MAC for first allo-HSCT of bone marrow (BM) or peripheral blood stem cells (PBSC) from matched-related (MRD) or unrelated donors (UD) in first (CR1) or second remission (CR2) between 2000 and 2012 were included. Propensity score weighting was used to control pretreatment imbalances of the observed variables. 3.054 patients were analyzed. CR1 (1.498): median follow-up (FU) after FTBI (1.285) and CC (213) was 6.8 and 6.1 years. Survivals were not significantly different. CR2 (1.556): median FU after FTBI (1.345) and CC (211) was 6.2 years. Outcomes after FTBI were superior as compared with CC with regard to overall survival (OS), leukemia-free survival (LFS), relapse incidence (RI), and nonrelapse mortality (NRM). However, we must emphasize the preliminary character of the results of this retrospective “real-world-practice” study. These findings will be prospectively assessed in the ALL SCTped 2012 FORUM trial.
  •  
3.
  • Zhang, X. S., et al. (författare)
  • Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice
  • 2021
  • Ingår i: Cell Host & Microbe. - : Elsevier BV. - 1931-3128. ; 29:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal m icrobiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3 gamma, in an innate intestinal immune network involving CD44, TLR2, and Reg3 gamma. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
  •  
4.
  • Attaye, Ilias, et al. (författare)
  • Protein supplementation changes gut microbial diversity and derived metabolites in subjects with type 2 diabetes
  • 2023
  • Ingår i: ISCIENCE. - 2589-0042. ; 26:8
  • Tidskriftsartikel (refereegranskat)abstract
    • High-protein diets are promoted for individuals with type 2 diabetes (T2D). How-ever, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized -controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and-derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.
  •  
5.
  • Bustamante, Mercedes, et al. (författare)
  • Ten new insights in climate science 2023
  • 2023
  • Ingår i: Global Sustainability. - : CAMBRIDGE UNIV PRESS. - 2059-4798. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5 degrees C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5 degrees C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts.
  •  
6.
  • Nemet, I., et al. (författare)
  • Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality
  • 2023
  • Ingår i: European Heart Journal. - 0195-668X. ; 44:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions.Methods and results Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan).Conclusion Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.
  •  
7.
  • Romano, K. A., et al. (författare)
  • Gut Microbiota-Generated Phenylacetylglutamine and Heart Failure
  • 2023
  • Ingår i: Circulation-Heart Failure. - : Ovid Technologies (Wolters Kluwer Health). - 1941-3289 .- 1941-3297. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The gut microbiota-dependent metabolite phenylacetylgutamine (PAGln) is both associated with atherothrombotic heart disease in humans, and mechanistically linked to cardiovascular disease pathogenesis in animal models via modulation of adrenergic receptor signaling.Methods: Here we examined both clinical and mechanistic relationships between PAGln and heart failure (HF). First, we examined associations among plasma levels of PAGln and HF, left ventricular ejection fraction, and N-terminal pro-B-type natriuretic peptide in 2 independent clinical cohorts of subjects undergoing coronary angiography in tertiary referral centers (an initial discovery US Cohort, n=3256; and a validation European Cohort, n=829). Then, the impact of PAGln on cardiovascular phenotypes relevant to HF in cultured cardiomyoblasts, and in vivo were also examined.Results: Circulating PAGln levels were dose-dependently associated with HF presence and indices of severity (reduced ventricular ejection fraction, elevated N-terminal pro-B-type natriuretic peptide) independent of traditional risk factors and renal function in both cohorts. Beyond these clinical associations, mechanistic studies showed both PAGln and its murine counterpart, phenylacetylglycine, directly fostered HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction, and B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue.Conclusions: The present study reveals the gut microbial metabolite PAGln is clinically and mechanistically linked to HF presence and severity. Modulating the gut microbiome, in general, and PAGln production, in particular, may represent a potential therapeutic target for modulating HF.Registration: URL: ; Unique identifier: NCT00590200 and URL: ; Unique identifier: DRKS00020915.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy