SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nenes Athanasios) "

Sökning: WFRF:(Nenes Athanasios)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Papadopoulos, Nikolaos G., et al. (författare)
  • Addressing adverse synergies between chemical and biological pollutants at schools—The ‘SynAir-G’ hypothesis
  • 2024
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 79:2, s. 294-301
  • Tidskriftsartikel (refereegranskat)abstract
    • While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the ‘pollutant’ definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.
  •  
2.
  • Baker, Alex R., et al. (författare)
  • Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.
  •  
3.
  • Fanourgakis, George S., et al. (författare)
  • Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:13, s. 8591-8617
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters >50 and >120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (Nd=Na) and to updraft velocity (Nd=w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities Nd=Na and Nd=w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain intermodel biases on the aerosol indirect effect.
  •  
4.
  • Georgakaki, Paraskevi, et al. (författare)
  • Secondary ice production processes in wintertime alpine mixed-phase clouds
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:3, s. 1965-1988
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of orographic mixed-phase clouds (MPCs) have long shown that measured ice crystal number concentrations (ICNCs) can exceed the concentration of ice nucleating particles by orders of magnitude. Additionally, model simulations of alpine clouds are frequently found to underestimate the amount of ice compared with observations. Surface-based blowing snow, hoar frost, and secondary ice production processes have been suggested as potential causes, but their relative importance and persistence remains highly uncertain. Here we study ice production mechanisms in wintertime orographic MPCs observed during the Cloud and Aerosol Characterization Experiment (CLACE) 2014 campaign at the Jungfraujoch site in the Swiss Alps with the Weather Research and Forecasting model (WRF). Simulations suggest that droplet shattering is not a significant source of ice crystals at this specific location, but breakups upon collisions between ice particles are quite active, elevating the predicted ICNCs by up to 3 orders of magnitude, which is consistent with observations. The initiation of the ice–ice collisional breakup mechanism is primarily associated with the occurrence of seeder–feeder events from higher precipitating cloud layers. The enhanced aggregation of snowflakes is found to drive secondary ice formation in the simulated clouds, the role of which is strengthened when the large hydrometeors interact with the primary ice crystals formed in the feeder cloud. Including a constant source of cloud ice crystals from blowing snow, through the action of the breakup mechanism, can episodically enhance ICNCs. Increases in secondary ice fragment generation can be counterbalanced by enhanced orographic precipitation, which seems to prevent explosive multiplication and cloud dissipation. These findings highlight the importance of secondary ice and seeding mechanisms – primarily falling ice from above and, to a lesser degree, blowing ice from the surface – which frequently enhance primary ice and determine the phase state and properties of MPCs.
  •  
5.
  • Karalis, Michail, et al. (författare)
  • Effects of secondary ice processes on a stratocumulus to cumulus transition during a cold-air outbreak
  • 2022
  • Ingår i: Atmospheric research. - : Elsevier Ltd. - 0169-8095 .- 1873-2895. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The representation of boundary layer clouds during marine Cold-Air Outbreaks (CAO) remains a great challenge for weather prediction models. Recent studies have shown that the representation of the transition from closed stratocumulus clouds to convective cumulus open cells largely depends on microphysical and precipitation processes, which secondary ice production (SIP) may strongly modulate. In this study we use the Weather Research and Forecasting model to investigate the impact of the most well-known SIP mechanisms (Hallett-Mossop, mechanical break-up upon collisions between ice particles and drop-shattering) on a CAO case observed north of the United Kingdom in 2013. While Hallett-Mossop is the only SIP process extensively implemented in atmospheric models, our results indicate that the other two SIP mechanisms are also favored in the examined conditions. Activation of drop-shattering and especially collisional break-up can result in enhanced riming, ice depositional growth and/or ice aggregation. The first two processes quicken liquid depletion in the stratocumulus cloud, while along with aggregation, they enhance precipitation. The increased precipitation results in enhanced evaporation/sublimation in the sub-cloud layer, promoting boundary-layer decoupling, which further accelerates the onset of the stratocumulus break-up. However, the strong sensitivity to the expression of terminal velocity of the precipitating particles and the rimed fraction of cloud ice/snow suggests that the robust implementation of SIP to improve CAO predictions requires data from a large number of CAO events.
  •  
6.
  • Lee, Shan Hu, et al. (författare)
  • Isoprene suppression of new particle formation : Potential mechanisms and implications
  • 2016
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-897X. ; 121:24, s. 14-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary aerosols formed from anthropogenic pollutants and natural emissions have substantial impacts on human health, air quality, and the Earth's climate. New particle formation (NPF) contributes up to 70% of the global production of cloud condensation nuclei (CCN), but the effects of biogenic volatile organic compounds (BVOCs) and their oxidation products on NPF processes in forests are poorly understood. Observations show that isoprene, the most abundant BVOC, suppresses NPF in forests. But the previously proposed chemical mechanism underlying this suppression process contradicts atmospheric observations. By reviewing observations made in other forests, it is clear that NPF rarely takes place during the summer when emissions of isoprene are high, even though there are sufficient concentrations of monoterpenes. But at present it is not clear how isoprene and its oxidation products may change the oxidation chemistry of terpenes and how NOx and other atmospheric key species affect NPF in forest environments. Future laboratory experiments with chemical speciation of gas phase nucleation precursors and clusters and chemical composition of particles smaller than 10 nm are required to understand the role of isoprene in NPF. Our results show that climate models can overpredict aerosol's first indirect effect when not considering the absence of NPF in the southeastern U.S. forests during the summer using the current nucleation algorithm that includes only sulfuric acid and total concentrations of low-volatility organic compounds. This highlights the importance of understanding NPF processes as function of temperature, relative humidity, and BVOC compositions to make valid predictions of NPF and CCN at a wide range of atmospheric conditions.
  •  
7.
  • Motos, Ghislain, et al. (författare)
  • Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:21, s. 13941-13956
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is therefore an important driver of Arctic change that currently lacks sufficient constraints. As such, during the NASCENT campaign (Ny-Ålesund AeroSol Cloud ExperimeNT) extending over a full year from October 2019 to October 2020, microphysical properties of aerosols and clouds were studied at the Zeppelin station (475 m a.s.l.), Ny-Ålesund, Svalbard, Norway. Particle number size distributions obtained from differential mobility particle sizers as well as chemical composition derived from filter samples and an aerosol chemical speciation monitor were analyzed together with meteorological data, in particular vertical wind velocity. The results were used as input to a state-of-the-art cloud droplet formation parameterization to investigate the particle sizes that can activate to cloud droplets, the levels of supersaturation that can develop, the droplet susceptibility to aerosol and the role of vertical velocity. We evaluate the parameterization and the droplet numbers calculated through a droplet closure with in-cloud in situ measurements taken during nine flights over 4 d. A remarkable finding is that, for the clouds sampled in situ, closure is successful in mixed-phase cloud conditions regardless of the cloud glaciation fraction. This suggests that ice production through ice–ice collisions or droplet shattering may have explained the high ice fraction, as opposed to rime splintering that would have significantly reduced the cloud droplet number below levels predicted by warm-cloud activation theory. We also show that pristine-like conditions during fall led to clouds that formed over an aerosol-limited regime, with high levels of supersaturation (generally around 1 %, although highly variable) that activate particles smaller than 20 nm in diameter. Clouds formed in the same regime in late spring and summer, but aerosol activation diameters were much larger due to lower cloud supersaturations (ca. 0.5 %) that develop because of higher aerosol concentrations and lower vertical velocities. The contribution of new particle formation to cloud formation was therefore strongly limited, at least until these newly formed particles started growing. However, clouds forming during the Arctic haze period (winter and early spring) can be limited by updraft velocity, although rarely, with supersaturation levels dropping below 0.1 % and generally activating larger particles (20 to 200 nm), including pollution transported over a long range. The relationship between updraft velocity and the limiting cloud droplet number agrees with previous observations of various types of clouds worldwide, which supports the universality of this relationship.
  •  
8.
  • Quaas, Johannes, et al. (författare)
  • Constraining the Twomey effect from satellite observations : issues and perspectives
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 15079-15099
  • Tidskriftsartikel (refereegranskat)abstract
    • The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol-cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to Delta N-d, (ant) ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (N-d) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, Delta N-d, (ant), remains uncertain. The discrepancy between process under-standing at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining Delta N-d, (ant) namely the quantification of (i) the cloud-active aerosol - the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) N-d, (iii) the statistical approach for inferring the sensitivity of N-d to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of N-d, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the N-d-to-CCN sensitivity, key issues are the updraught distributions and the role of N-d sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect.
  •  
9.
  • Schmale, Julia, et al. (författare)
  • Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  •  
10.
  • Schmale, Julia, et al. (författare)
  • Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:4, s. 2853-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  •  
11.
  • Sotiropoulou, Georgia, et al. (författare)
  • Ice multiplication from ice-ice collisions in the high Arctic: Sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:12, s. 9741-9760
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric models often fail to correctly reproduce the microphysical structure of Arctic mixed-phase clouds and underpredict ice water content even when the simulations are constrained by observed levels of ice nucleating particles. In this study we investigate whether ice multiplication from breakup upon ice-ice collisions, a process missing in most models, can account for the observed cloud ice in a stratocumulus cloud observed during the Arctic Summer Cloud Ocean Study (ASCOS) campaign. Our results indicate that the efficiency of this process in these conditions is weak; increases in fragment generation are compensated for by subsequent enhancement of precipitation and subcloud sublimation. Activation of collisional breakup improves the representation of cloud ice content, but cloud liquid remains overestimated. In most sensitivity simulations, variations in ice habit and prescribed rimed fraction have little effect on the results. A few simulations result in explosive multiplication and cloud dissipation; however, in most setups, the overall multiplication effects become substantially weaker if the precipitation sink is enhanced through cloud-ice-to-snow autoconversion. The largest uncertainty stems from the correction factor for ice enhancement due to sublimation included in the breakup parameterization; excluding this correction results in rapid glaciation, especially in simulations with plates. Our results indicate that the lack of a detailed treatment of ice habit and rimed fraction in most bulk microphysics schemes is not detrimental for the description of the collisional breakup process in the examined conditions as long as cloud-ice-to-snow autoconversion is considered.
  •  
12.
  • Sotiropoulou, Georgia, et al. (författare)
  • Secondary ice production in summer clouds over the Antarctic coast : an underappreciated process in atmospheric models
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:2, s. 755-771
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct representation of Antarctic clouds in atmospheric models is crucial for accurate projections of the future Antarctic climate. This is particularly true for summer clouds which play a critical role in the surface melting of the ice shelves in the vicinity of the Weddell Sea. The pristine atmosphere over the Antarctic coast is characterized by low concentrations of ice nucleating particles (INPs) which often result in the formation of supercooled liquid clouds. However, when ice formation occurs, the ice crystal number concentrations (ICNCs) are substantially higher than those predicted by existing primary ice nucleation parameterizations. The rime-splintering mechanism, thought to be the dominant secondary ice production (SIP) mechanism at temperatures between -8 and -3 degrees C, is also weak in the Weather and Research Forecasting model. Including a parameterization for SIP due to breakup (BR) from collisions between ice particles improves the ICNC representation in the modeled mixed-phase clouds, suggesting that BR could account for the enhanced ICNCs often found in Antarctic clouds. The model results indicate that a minimum concentration of about similar to 0.1 L-1 of primary ice crystals is necessary and sufficient to initiate significant breakup to explain the observations, while our findings show little sensitivity to increasing INPs. The BR mechanism is currently not represented in most weather prediction and climate models; including this process can have a significant impact on the Antarctic radiation budget.
  •  
13.
  • Sotiropoulou, Georgia, et al. (författare)
  • The impact of secondary ice production on Arctic stratocumulus
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:3, s. 1301-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ measurements of Arctic clouds frequently show that ice crystal number concentrations (ICNCs) are much higher than the number of available ice-nucleating particles (INPs), suggesting that secondary ice production (SIP) may be active. Here we use a Lagrangian parcel model (LPM) and a large-eddy simulation (LES) to investigate the impact of three SIP mechanisms (rime splintering, breakup from ice-ice collisions and drop shattering) on a summer Arctic stratocumulus case observed during the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (AC-CACIA) campaign. Primary ice alone cannot explain the observed ICNCs, and drop shattering is ineffective in the examined conditions. Only the combination of both rime splintering (RS) and collisional break-up (BR) can explain the observed ICNCs, since both of these mechanisms are weak when activated alone. In contrast to RS, BR is currently not represented in large-scale models; however our results indicate that this may also be a critical ice-multiplication mechanism. In general, low sensitivity of the ICNCs to the assumed INP, to the cloud condensation nuclei (CCN) conditions and also to the choice of BR parameterization is found. Finally, we show that a simplified treatment of SIP, using a LPM constrained by a LES and/or observations, provides a realistic yet computationally efficient way to study SIP effects on clouds. This method can eventually serve as a way to parameterize SIP processes in large-scale models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Nenes, Athanasios (13)
Sotiropoulou, Georgi ... (3)
Ekman, Annica M. L. (3)
Schmale, Julia (3)
Kanakidou, Maria (3)
Kristensson, Adam (2)
visa fler...
Swietlicki, Erik (2)
Frank, Göran (2)
Mihalopoulos, Nikola ... (2)
Sellegri, Karine (2)
Keskinen, Helmi (2)
Kulmala, Markku (2)
Baltensperger, Urs (2)
Decesari, Stefano (2)
Petäjä, Tuukka (2)
Stier, Philip (2)
Jefferson, Anne (2)
Myriokefalitakis, St ... (2)
Mahowald, Natalie M. (2)
Yang, Yang (1)
Aas, Wenche (1)
Turner, David R., 19 ... (1)
Gao, Yuan (1)
Tesche, Matthias (1)
Kirkevåg, Alf (1)
Pereira Freitas, Gab ... (1)
Krejci, Radovan, 197 ... (1)
Annesi-Maesano, Isab ... (1)
Svenningsson, Birgit ... (1)
Brune, William Henry (1)
Artaxo, Paulo (1)
Carbone, Samara (1)
Wiedensohler, Alfred (1)
Stratmann, Frank (1)
Heikkinen, Liine (1)
Pöhlker, Christopher (1)
Pöschl, Ulrich (1)
Rosenfeld, Daniel (1)
Fiebig, Markus (1)
Baker, Alex R. (1)
Croot, Peter L. (1)
Duce, Robert A. (1)
Guieu, Cécile (1)
Ito, Akinori (1)
Jickells, Tim D. (1)
Middag, Rob (1)
Perron, Morgane M.G. (1)
Sarin, Manmohan M. (1)
Shelley, Rachel (1)
Arola, Antti (1)
visa färre...
Lärosäte
Stockholms universitet (7)
Lunds universitet (4)
Göteborgs universitet (1)
Luleå tekniska universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy