SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nerini D.) "

Sökning: WFRF:(Nerini D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gupta, S., et al. (författare)
  • Assessing whether artificial intelligence is an enabler or an inhibitor of sustainability at indicator level
  • 2021
  • Ingår i: Transportation Engineering. - : Elsevier BV. - 2666-691X. ; 4, s. 100064-
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the early phase of the artificial-intelligence (AI) era expectations towards AI are high, with experts believing that AI paves the way for managing and handling various global challenges. However, the significant enabling and inhibiting influence of AI for sustainable development needs to be assessed carefully, given that the technology diffuses rapidly and affects millions of people worldwide on a day-to-day basis. To address this challenge, a panel discussion was organized by the KTH Royal Institute of Technology, the AI Sustainability Center and MIT Massachusetts Institute of Technology, gathering a wide range of AI experts. This paper summarizes the insights from the panel discussion around the following themes: The role of AI in achieving the Sustainable Development Goals (SDGs); AI for a prosperous 21st century; Transparency, automated decision-making processes, and personal profiling; and Measuring the relevance of Digitalization and Artificial Intelligence (D&AI) at the indicator level of SDGs. The research-backed panel discussion was dedicated to recognize and prioritize the agenda for addressing the pressing research gaps for academic research, funding bodies, professionals, as well as industry with an emphasis on the transportation sector. A common conclusion across these themes was the need to go beyond the development of AI in sectorial silos, so as to understand the impacts AI might have across societal, environmental, and economic outcomes. The recordings of the panel discussion can be found at: https://www.kth.se/en/2.18487/evenemang/the-role-of-ai-in-achieving-the-sdgs-enabler-or-inhibitor-1.1001364?date=2020–08–20&length=1&orglength=185&orgdate=2020–06–30 Short link: https://bit.ly/2Kap1tE
  •  
2.
  • Pauthenet, E., et al. (författare)
  • Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:18, s. 9774-9781
  • Tidskriftsartikel (refereegranskat)abstract
    • The location of the Antarctic Polar Front (PF) is mapped in the Southern Indian Ocean by decomposing the shape of temperature and salinity profiles into vertical modes using a functional Principal Component Analysis. We define the PF as the northernmost minimum of temperature at the subsurface and represent it as a linear combination of the first three modes. This method is applied on an ocean reanalysis data set and on in situ observations, revealing a seasonal variability of the PF latitudinal position that is most pronounced between the Conrad Rise and the Kerguelen Plateau. This shift coincides with variations in the transport across the Northern Kerguelen Plateau. We suggest that seasonal changes of the upper stratification may drive the observed variability of the PF, with potentially large implications for the pathways and residence time of water masses over the plateau and the phytoplankton bloom extending southeast of the Kerguelen Islands. Plain Language Summary The Antarctic Polar Front (PF) is a water mass boundary that flows around Antarctica between approximately 48 degrees S and 56 degrees S in the Southern Indian Ocean. The position of the PF in space and time is important to understand the oceanic circulation, the heat and salt exchanges, and also marine ecosystems. In the Indian sector the PF has to cross the Kerguelen Plateau, a major bottom topography feature. The present study develops and then applies a novel method for mapping the PF taking into account the whole hydrographic structure in the upper 300 m of the ocean. We are able to map the PF position and find that it presents large seasonal variations that are more intense just west of the Kerguelen Plateau. Between the Conrad Rise and the Kerguelen Plateau, the PF is essentially zonally orientated in September and found farther south by up to 4 degrees latitude in March. Shifts in the PF position are shown to correlate with a seasonal variation in volume transport between Kerguelen and Heard Islands. We discuss how these seasonal variations in circulation pathways could have an impact on the local marine ecosystems.
  •  
3.
  • Pauthenet, Etienne, 1991-, et al. (författare)
  • Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:18, s. 9774-9781
  • Tidskriftsartikel (refereegranskat)abstract
    • The location of the Antarctic Polar Front (PF) is mapped in the Southern Indian Ocean bydecomposing the shape of temperature and salinity profiles into vertical modes using a functional PrincipalComponent Analysis. We define the PF as the northernmost minimum of temperature at the subsurface andrepresent it as a linear combination of the first three modes. This method is applied on an ocean reanalysisdata set and on in situ observations, revealing a seasonal variability of the PF latitudinal position that ismost pronounced between the Conrad Rise and the Kerguelen Plateau. This shift coincides with variationsin the transport across the Northern Kerguelen Plateau. We suggest that seasonal changes of the upperstratification may drive the observed variability of the PF, with potentially large implications for thepathways and residence time of water masses over the plateau and the phytoplankton bloom extendingsoutheast of the Kerguelen Islands.
  •  
4.
  • Pauthenet, E., et al. (författare)
  • The Thermohaline Modes of the Global Ocean
  • 2019
  • Ingår i: Journal of Physical Oceanography. - : American Meteorological Society. - 0022-3670 .- 1520-0485. ; 49:10, s. 2535-2552
  • Tidskriftsartikel (refereegranskat)abstract
    • The first 2000 m of the global thermohaline structure of the ocean are statistically decomposed into vertical thermohaline modes, using a multivariate functional principal component analysis (FPCA). This method is applied on the Monthly Isopycnal and Mixed-Layer Ocean Climatology (MIMOC). The first three modes account for 92% of the joint temperature and salinity (T-S) variance, which yields a surprisingly good reduction of dimensionality. The first mode (69% of the variance) is related to the thermocline depth and delineates the subtropical gyres. The second mode (18%) is mostly driven by salinity and mainly displays the asymmetry between the North Pacific and Atlantic basins and the salty circumpolar deep waters in the Southern Ocean. The third mode (5%) identifies the low- and high-salinity intermediate waters, covarying with the freshwater inputs of the upper ocean. The representation of the ocean in the space defined by the first three modes offers a simple visualization of the global thermohaline structure that strikingly emphasizes the role of the Southern Ocean in linking and distributing water masses to the other basins. The vertical thermohaline modes offer a convenient framework for model and observation data comparison. This is illustrated by projecting the repeated Pacific section P16 together with profiles from the Array for Real-Time Geostrophic Oceanography (ARGO) global array of profiling floats on the modes defined with the climatology MIMOC. These thermohaline modes have a potential for water mass identification and robust analysis of heat and salt content.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy