SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nerup Jørn) "

Sökning: WFRF:(Nerup Jørn)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergholdt, Regine, et al. (författare)
  • Integrative analysis for finding genes and networks involved in diabetes and other complex diseases
  • 2007
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1465-6906. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an integrative analysis method combining genetic interactions, identified using type l diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/ proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.
  •  
2.
  • Bergholdt, R, et al. (författare)
  • Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets
  • 2007
  • Ingår i: Genes and Immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 8:3, s. 232-238
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently finemapped a type 1 diabetes (T1D)-linked region on chromosome 21, indicating that one or more T1D-linked genes exist in this region with 33 annotated genes. In the current study, we have taken a novel approach using transcriptional profiling in predicting and prioritizing the most likely candidate genes influencing beta-cell function in this region. Two array-based approaches were used, a rat insulinoma cell line (INS-1 alpha beta) overexpressing pancreatic duodenum homeobox 1 (pdx-1) and treated with interleukin 1 beta (IL-1 beta) as well as human pancreatic islets stimulated with a mixture of cytokines. Several candidate genes with likely functional significance in T1D were identified. Genes showing differential expression in the two approaches were highly similar, supporting the role of these specific gene products in cytokine-induced beta-cell damage. These were genes involved in cytokine signaling, oxidative phosphorylation, defense responses and apoptosis. The analyses, furthermore, revealed several transcription factor binding sites shared by the differentially expressed genes and by genes demonstrating highly similar expression profiles with these genes. Comparable findings in the rat beta-cell line and human islets support the validity of the methods used and support this as a valuable approach for gene mapping and identification of genes with potential functional significance in T1D, within a region of linkage.
  •  
3.
  • Christensen, Ulla Bjerre, et al. (författare)
  • Different islet protein expression profiles during spontaneous diabetes development vs. allograft rejection in BB-DP rats
  • 2006
  • Ingår i: Autoimmunity. - : Informa UK Limited. - 0891-6934 .- 1607-842X. ; 39:4, s. 315-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is characterized by selective autoimmune destruction of the insulin producing beta-cells in the islets of Langerhans. When the beta-cells are destroyed exogenous administration of insulin is necessary for maintenance of glucose homeostasis. Allogeneic islet transplantation has been used as a means to circumvent the need for insulin administration and has in some cases been able to restore endogenous insulin production for years. However, long life immunosuppression is needed to prevent the graft from being rejected and destroyed. Changes in protein expression pattern during spontaneous diabetes development in the diabetes prone BioBreeding rat (BB-DP) have previously been described. In the present study, we have investigated if any of the changes seen in the protein expression pattern during spontaneous diabetes development are also present during allograft rejection of BB-DP rat islets. Two hundred neonatal islets were syngeneically transplanted under the kidney capsule of 30 day old BB-DP rats and removed prior to and at onset of diabetes. Allogeneically transplanted islets from BB-DP rats were removed before onset of allograft rejection and at maximal islet graft inflammation (rejection). The protein expression profiles of the transplants were visualised by two-dimensional gel (2-DG) electrophoresis, analysed and compared. In total, 2590 protein spots were visualised and of these 310 changed expression ( p < 0.01) in syngeneic islet transplants in the BB-DP rats from 7 days after transplantation until onset of diabetes. In BB-DP islets transplanted to WK rats 53 protein spots ( p < 0.01) showed changes in expression when comparing islet grafts removed 7 days after transplantation with islet grafts removed 12 days after transplantation where mononuclear cell infiltration is at its maximum. Only four protein spots (1%) were significantly changed in both syngeneic (autoimmune) and allogeneic islet destruction. When comparing protein expression changes in syngeneic BB-DP islet transplants from 37 days after transplantation to onset of diabetes with protein expression changes in allografts from day 7 to 12 after transplantation only three spot were found to commonly change expression in both situations. In conclusion, a large number of protein expression changes were detected in both autoimmune islet destruction and allogeneic islet rejection, only two overlaps were detected, suggesting that autoimmune islet destruction and allogeneic islet rejection may result from different target cell responses to signals induced by the cellular infiltrate. Whether this reflects activation of distinct signalling pathways in islet cells is currently unknown and need to be further investigated.
  •  
4.
  •  
5.
  • Gylvin, T., et al. (författare)
  • Functional SOCS1 polymorphisms are associated with variation in obesity in whites
  • 2009
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902 .- 1463-1326. ; 11:3, s. 196-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The suppressor of cytokine signalling 1 (SOCS1) is a natural inhibitor of cytokine and insulin signalling pathways and may also play a role in obesity. In addition, SOCS1 is considered a candidate gene in the pathogenesis of both type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective was to perform mutation analysis of SOCS1 and to test the identified variations for association to T2D-related quantitative traits, T2D or T1D. Mutation scanning was performed by direct sequencing in 27 white Danish subjects. Genotyping was carried out by TaqMan allelic discrimination. A total of more than 8100 individuals were genotyped. Eight variations were identified in the 5' untranslated region (UTR) region. Two of these had allele frequencies below 1% and were not further examined. The six other variants were analysed in groups of T1D families (n = 1461 subjects) and T2D patients (n = 1430), glucose tolerant first-degree relatives of T2D patients (n = 212) and normal glucose tolerant (NGT) subjects. The rs33977706 polymorphism (-820G > T) was associated with a lower body mass index (BMI) (p = 0.004). In a second study (n = 4625 NGT subjects), significant associations of both the rs33977706 and the rs243330 (-1656G > A) variants to obesity were found (p = 0.047 and p = 0.015) respectively. The rs33977706 affected both binding of a nuclear protein to and the transcriptional activity of the SOCS1 promoter, indicating a relationship between this polymorphism and gene regulation. This study demonstrates that functional variations in the SOCS1 promoter may associate with alterations in BMI in the general white population.
  •  
6.
  •  
7.
  •  
8.
  • Reusens, B., et al. (författare)
  • The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 51:5, s. 836-845
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Events during fetal life may in critical time windows programme tissue development leading to organ dysfunction with potentially harmful consequences in adulthood such as diabetes. In rats, the beta cell mass of progeny from dams fed with a low-protein (LP) diet during gestation is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes in gene expression in fetal islets affected by the LP diet and how taurine may prevent these changes. Methods Pregnant Wistar rats were fed an LP diet (8% [wt/wt] protein) supplemented or not with taurine in the drinking water or a control diet (20% [wt/wt] protein). At 21.5 days of gestation, fetal pancreases were removed, digested and cultured for 7 days. Neoformed islets were collected and transcriptome analysis was performed. Results Maternal LP diet significantly changed the expression of more than 10% of the genes. Tricarboxylic acid cycle and ATP production were highly targeted, but so too were cell proliferation and defence. Maternal taurine supplementation normalised the expression of all altered genes. Conclusions/Interpretation Development of the beta cells and particularly their respiration is modulated by the intrauterine environment, which may epigenetically modify expression of the genome and programme the beta cell towards a pre-diabetic phenotype. This mis-programming by maternal LP diet was prevented by early taurine intervention.
  •  
9.
  • Skovhus, K. V., et al. (författare)
  • Identification and characterization of secretagogin promoter activity
  • 2006
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 1365-3083 .- 0300-9475. ; 64:6, s. 639-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Secretagogin is a newly identified calcium-binding protein selectively expressed in neuroendocrine tissue and pancreatic beta-cells. The function of secretagogin is unknown, but it has been suggested in beta-cells to influence calcium-influx, insulin secretion and proliferation, and has been observed downregulated in diabetes-prone BB rat islets exposed to cytokines. In the present study, we identified and characterized promoter activity of a human 1498 bp sequence upstream the transcription start site. The promoter sequence showed subtle but significant regulation by glucose within the normo-physiological range. Glucose also led to changes in expression of secretagogin protein in INS-1e cells, but not in primary cells from non-diabetes-prone Wistar Furth rats. No effects of cytokines neither on promoter activity nor protein expression were observed. The promoter region was furthermore screened by direct sequencing, and 11 polymorphisms were identified. Genotyping in a large homogenous Type 1 diabetes (T1D) family collection did not reveal association with T1D.
  •  
10.
  • Wagner, A. M., et al. (författare)
  • Post-translational protein modifications in type 1 diabetes: a role for the repair enzyme protein-L-isoaspartate (D-aspartate) O-methyltransferase?
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:3, s. 676-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Post-translational modifications, such as isomerisation of native proteins, may create new antigenic epitopes and play a role in the development of the autoimmune response. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), encoded by the gene PCMT1, is an enzyme that recognises and repairs isomerised Asn and Asp residues in proteins. The aim of this study was to assess the role of PIMT in the development of type 1 diabetes. Materials and methods Immunohistochemical analysis of 59 normal human tissues was performed with a monoclonal PIMT antibody. CGP3466B, which induces expression of Pcmt1, was tested on MIN6 and INS1 cells, to assess its effect on Pcmt1 mRNA and PIMT levels (RT-PCR and western blot) and apoptosis. Forty-five diabetes-prone BioBreeding (BB) Ottawa Karlsburg (OK) rats were randomised to receive 0, 14 or 500 mu g/kg (denoted as the control, low-dose and high-dose group, respectively) of CGP3466B from week 5 to week 20. Results A high level of PIMT protein was detected in beta cells. CGP3466B induced a two- to threefold increase in Pcmt1 mRNA levels and reduced apoptosis by 10% in MIN6 cells. No significant effect was seen on cytokine-induced apoptosis or PIMT protein levels in INS1 cells. The onset of diabetes in the BB/OK rats was significantly delayed (85.6 +/- 9.0 vs 84.3 +/- 6.8 vs 106.6 +/- 13.5 days, respectively; p < 0.01 for high-dose vs low-dose and control groups), the severity of the disease was reduced (glucose 22.2 +/- 3.2 vs 16.9 +/- 2.6 vs 15.8 +/- 2.7 mmol; p < 0.01 for high- and low-dose groups vs control group) and residual beta cells were more frequently identified (43% vs 71% vs 86%; p < 0.05 for high-dose vs control group) in the treated animals. Conclusions/interpretation The results support a role for post-translational modifications and PIMT in the development of type 1 diabetes in the diabetes-prone BB rat, and perhaps also in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy