SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Netotea S) "

Sökning: WFRF:(Netotea S)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Rentoft, Matilda, et al. (författare)
  • A geographically matched control population efficiently limits the number of candidate disease-causing variants in an unbiased whole-genome analysis
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing is a promising approach for human autosomal dominant disease studies. However, the vast number of genetic variants observed by this method constitutes a challenge when trying to identify the causal variants. This is often handled by restricting disease studies to the most damaging variants, e. g. those found in coding regions, and overlooking the remaining genetic variation. Such a biased approach explains in part why the genetic causes of many families with dominantly inherited diseases, in spite of being included in whole-genome sequencing studies, are left unsolved today. Here we explore the use of a geographically matched control population to minimize the number of candidate disease-causing variants without excluding variants based on assumptions on genomic position or functional predictions. To exemplify the benefit of the geographically matched control population we apply a typical disease variant filtering strategy in a family with an autosomal dominant form of colorectal cancer. With the use of the geographically matched control population we end up with 26 candidate variants genome wide. This is in contrast to the tens of thousands of candidates left when only making use of available public variant datasets. The effect of the local control population is dual, it (1) reduces the total number of candidate variants shared between affected individuals, and more importantly (2) increases the rate by which the number of candidate variants are reduced as additional affected family members are included in the filtering strategy. We demonstrate that the application of a geographically matched control population effectively limits the number of candidate disease-causing variants and may provide the means by which variants suitable for functional studies are identified genome wide.
  •  
3.
  • Wagner, Raik, et al. (författare)
  • Deletion of FtsH11 protease has impact on chloroplast structure and function in Arabidopsis thaliana when grown under continuous light
  • 2016
  • Ingår i: Plant Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 39:11, s. 2530-2544
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana is proposed to be dual-targeted to mitochondria and chloroplasts. A bleached phenotype was observed in ftsh11 grown at long days or continuous light, pointing to disturbances in the chloroplast. Within the chloroplast, FtsH11 was found to be located exclusively in the envelope. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsh11 and therefore qualify as potential substrates for the FtsH11 protease. No proteomic changes were observed in the mitochondria of 6-week-old ftsh11 compared with wild type, and FtsH11 was not immunodetected in these organelles. The abundance of plastidic proteins, especially of photosynthetic proteins, was altered even during standard growth conditions in total leaves of ftsh11. At continuous light, the amount of photosystem I decreased relative to photosystem II, accompanied by a drastic change of the chloroplast morphology and a drop of non-photochemical quenching. FtsH11 is crucial for chloroplast structure and function during growth in prolonged photoperiod. The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana was found to be located exclusively in the chloroplast envelope and to be crucial for chloroplast structure and function during growth in prolonged photoperiod. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsH11 and therefore qualify as potential substrates for the FtsH11 protease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy