SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Newland Mike J.) "

Sökning: WFRF:(Newland Mike J.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mehra, Archit, et al. (författare)
  • Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation
  • 2020
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:16, s. 9783-9803
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic volatile organic compounds (VOCs) are key anthropogenic pollutants emitted to the atmosphere and are important for both ozone and secondary organic aerosol (SOA) formation in urban areas. Recent studies have indicated that aromatic hydrocarbons may follow previously unknown oxidation chemistry pathways, including autoxidation that can lead to the formation of highly oxidised products. In this study we evaluate the gas- and particle-phase ions measured by online mass spectrometry during the hydroxyl radical oxidation of substituted C-9-aromatic isomers (1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, propylbenzene and isopropylbenzene) and a substituted polyaromatic hydrocarbon (1-methylnaphthalene) under low- and medium-NO x conditions. A time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) with iodide-anion ionisation was used with a filter inlet for gases and aerosols (FIGAERO) for the detection of products in the particle phase, while a Vocus protontransfer-reaction mass spectrometer (Vocus-PTR-MS) was used for the detection of products in the gas phase. The signal of product ions observed in the mass spectra were compared for the different precursors and experimental conditions. The majority of mass spectral product signal in both the gas and particle phases comes from ions which are common to all precursors, though signal distributions are distinct for different VOCs. Gas- and particle-phase composition are distinct from one another. Ions corresponding to products contained in the near-explicit gas phase Master Chemical Mechanism (MCM version 3.3.1) are utilised as a benchmark of current scientific understanding, and a comparison of these with observations shows that the MCM is missing a range of highly oxidised products from its mechanism. In the particle phase, the bulk of the product signal from all precursors comes from ring scission ions, a large proportion of which are more oxidised than previously reported and have undergone further oxidation to form highly oxygenated organic molecules (HOMs). Under the perturbation of OH oxidation with increased NOx, the contribution of HOM-ion signals to the particle-phase signal remains elevated for more substituted aromatic precursors. Up to 43% of product signal comes from ring-retaining ions including HOMs; this is most important for the more substituted aromatics. Unique products are a minor component in these systems, and many of the dominant ions have ion formulae concurrent with other systems, highlighting the challenges in utilising marker ions for SOA.
  •  
2.
  • Stiller-Reeve, Mathew, et al. (författare)
  • Improving together: better science writing through peer learning
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20, s. 2965-2973
  • Tidskriftsartikel (refereegranskat)abstract
    • Science, in our case the climate and geosciences, is increasingly interdisciplinary. Scientists must therefore com- municate across disciplinary boundaries. For this communi- cation to be successful, scientists must write clearly and con- cisely, yet the historically poor standard of scientific writing does not seem to be improving. Scientific writing must im- prove, and the key to long-term improvement lies with the early-career scientist (ECS). Many interventions exist for an ECS to improve their writing, like style guides and courses. However, momentum is often difficult to maintain after these interventions are completed. Continuity is key to improving writing. This paper introduces the ClimateSnack project, which aims to motivate ECSs to develop and continue to improve their writing and communication skills. The project adopts a peer-learning framework where ECSs voluntarily form writ- ing groups at different institutes around the world. The group members learn, discuss, and improve their writing skills to- gether. Several ClimateSnack writing groups have formed. This paper examines why some of the groups have flourished and others have dissolved. We identify the challenges involved in making a writing group successful and effective, notably the leadership of self-organized groups, and both individual and institutional time management. Within some of the groups, peer learning clearly offers a powerful tool to improve writ- ing as well as bringing other benefits, including improved general communication skills and increased confidence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy