SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Newton Cheh Christopher) "

Sökning: WFRF:(Newton Cheh Christopher)

  • Resultat 1-48 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Evangelou, Evangelos, et al. (författare)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
2.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
3.
  • Surendran, Praveen, et al. (författare)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:10, s. 1151-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used -1/4155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
  •  
4.
  • Voight, Benjamin F, et al. (författare)
  • Plasma HDL cholesterol and risk of myocardial infarction : a mendelian randomisation study
  • 2012
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 380:9841, s. 572-580
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.METHODS: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FINDINGS: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).INTERPRETATION: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
  •  
5.
  • Wain, Louise V., et al. (författare)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
6.
  • Ashar, Foram N., et al. (författare)
  • A comprehensive evaluation of the genetic architecture of sudden cardiac arrest
  • 2018
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 39:44, s. 3961-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify potential loci associated with SCA and to identify risk factors causally associated with SCA.Methods and results: We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian randomization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk.Conclusions: Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the determinants of a complex life-threatening condition with multiple influencing factors in the general population. The results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic architecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the general community.
  •  
7.
  • Flannick, Jason, et al. (författare)
  • Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:11, s. 1380-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders1-7 and who may consequently have increased disease risk. Previous studies of rare variants in phenotypically extreme individuals display ascertainment bias and may demonstrate inflated effect-size estimates8-12. We sequenced seven genes for maturity-onset diabetes of the young (MODY) 13 in well-phenotyped population samples14,15 (n = 4,003). We filtered rare variants according to two prediction criteria for disease-causing mutations: reported previously in MODY or satisfying stringent de novo thresholds (rare, conserved and protein damaging). Approximately 1.5% and 0.5% of randomly selected individuals from the Framingham and Jackson Heart Studies, respectively, carry variants from these two classes. However, the vast majority of carriers remain euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a substantial fraction of individuals as being at risk for MODY or other Mendelian diseases.
  •  
8.
  • Johnson, Toby, et al. (författare)
  • Blood Pressure Loci Identified with a Gene-Centric Array.
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 89:6, s. 688-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56× 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56× 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
  •  
9.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
10.
  • Newton-Cheh, Christopher, et al. (författare)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
11.
  • Ntalla, Ioanna, et al. (författare)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
12.
  • Patel, Riyaz S., et al. (författare)
  • Subsequent Event Risk in Individuals With Established Coronary Heart Disease : Design and Rationale of the GENIUS-CHD Consortium
  • 2019
  • Ingår i: Circulation. - 2574-8300. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185 614 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.RESULTS: Enrollment into the individual studies took place between 1985 to present day with a duration of follow-up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (hazard ratio, 1.15; 95% CI, 1.14-1.16) per 5-year increase, male sex (hazard ratio, 1.17; 95% CI, 1.13-1.21) and smoking (hazard ratio, 1.43; 95% CI, 1.35-1.51) with risk of subsequent CHD death or myocardial infarction and differing associations with other individual and composite cardiovascular endpoints.CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and nongenetic determinants of subsequent event risk in individuals with established CHD, to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators.
  •  
13.
  • Roselli, Carolina, et al. (författare)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
14.
  • Tragante, Vinicius, et al. (författare)
  • Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:3, s. 349-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification.
  •  
15.
  • van de Vegte, Yordi, et al. (författare)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
16.
  • Aragam, Krishna G., et al. (författare)
  • Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery
  • 2019
  • Ingår i: Circulation. - 0009-7322. ; 139:4, s. 489-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a morbid and heritable disorder for which the biological mechanisms are incompletely understood. We therefore examined genetic associations with HF in a large national biobank, and assessed whether refined phenotypic classification would facilitate genetic discovery. Methods: We defined all-cause HF among 488 010 participants from the UK Biobank and performed a genome-wide association analysis. We refined the HF phenotype by classifying individuals with left ventricular dysfunction and without coronary artery disease as having nonischemic cardiomyopathy (NICM), and repeated a genetic association analysis. We then pursued replication of lead HF and NICM variants in independent cohorts, and performed adjusted association analyses to assess whether identified genetic associations were mediated through clinical HF risk factors. In addition, we tested rare, loss-of-function mutations in 24 known dilated cardiomyopathy genes for association with HF and NICM. Finally, we examined associations between lead variants and left ventricular structure and function among individuals without HF using cardiac magnetic resonance imaging (n=4158) and echocardiographic data (n=30 201). Results: We identified 7382 participants with all-cause HF in the UK Biobank. Genome-wide association analysis of all-cause HF identified several suggestive loci (P<1×10 -6 ), the majority linked to upstream HF risk factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM analysis replicated in independent cohorts, persisted after HF risk factor adjustment, and were associated with indices of left ventricular dysfunction in individuals without clinical HF. In addition, analyses of loss-of-function variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10 -5 ). Conclusions: We found several distinct genetic mechanisms of all-cause HF in a national biobank that reflect well-known HF risk factors. Phenotypic refinement to a NICM subtype appeared to facilitate the discovery of genetic signals that act independently of clinical HF risk facto rs and that are associated with subclinical left ventricular dysfunction.
  •  
17.
  • Butler, Anne M., et al. (författare)
  • Novel Loci Associated With PR Interval in a Genome-Wide Association Study of 10 African American Cohorts
  • 2012
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 5:6, s. 639-646
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans. Methods and Results-We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and approximate to 2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (lambda range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (lambda: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0x10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0x10-8). Conclusions-This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent. (Circ Cardiovasc Genet. 2012;5:639-646.)
  •  
18.
  • Enhörning, Sofia, et al. (författare)
  • Plasma copeptin and the risk of diabetes mellitus.
  • 2010
  • Ingår i: Circulation. - 1524-4539. ; 121:19, s. 51-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Animal studies suggest that the arginine vasopressin system may play a role in glucose metabolism, but data from humans are limited. METHODS AND RESULTS: We analyzed plasma copeptin (copeptin), a stable C-terminal fragment of the arginine vasopressin prohormone. Using baseline and longitudinal data from a Swedish population-based sample (n=4742; mean age, 58 years; 60% women) and multivariable logistic regression, we examined the association of increasing quartiles of copeptin (lowest quartile as reference) with prevalent diabetes mellitus at baseline, insulin resistance (top quartile of fasting plasma insulin among nondiabetic subjects), and incident diabetes mellitus on long-term follow-up. New-onset diabetes mellitus was ascertained through 3 national and regional registers. All models were adjusted for clinical and anthropometric risk factors, cystatin C, and C-reactive protein. In cross-sectional analyses, increasing copeptin was associated with prevalent diabetes mellitus (P=0.04) and insulin resistance (P<0.001). During 12.6 years of follow-up, 174 subjects (4%) developed new-onset diabetes mellitus. The odds of developing diabetes mellitus increased across increasing quartiles of copeptin, even after additional adjustment for baseline fasting glucose and insulin (adjusted odds ratios, 1.0, 1.37, 1.79, and 2.09; P for trend=0.004). The association with incident diabetes mellitus remained significant in analyses restricted to subjects with fasting whole blood glucose <5.4 mmol/L at baseline (adjusted odds ratios, 1.0, 1.80, 1.92, and 3.48; P=0.001). CONCLUSIONS: Elevated copeptin predicts increased risk for diabetes mellitus independently of established clinical risk factors, including fasting glucose and insulin. These findings could have implications for risk assessment, novel antidiabetic treatments, and metabolic side effects from arginine vasopressin system modulation.
  •  
19.
  • Fedorowski, Artur, et al. (författare)
  • Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium.
  • 2012
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 1522-9645 .- 0195-668X. ; 33:18, s. 2331-2341
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown.Methods and resultsA total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence interval: 0.90, 0.85-0.96; P = 0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.75-0.95; P = 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87-0.98; P= 0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.02-1.24; P = 0.02, rs198358: 1.10, 1.01-1.20; P = 0.04, and rs5068: 1.22, 1.04-1.43; P = 0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P= 0.04).ConclusionThe overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components.
  •  
20.
  • Ganesh, Santhi K., et al. (författare)
  • Loci influencing blood pressure identified using a cardiovascular gene-centric array
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:8, s. 1663-1678
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
  •  
21.
  • Helgadottir, Anna, et al. (författare)
  • Genome-wide analysis yields new loci associating with aortic valve stenosis
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls of European ancestry. We identify two new AS loci, on chromosome 1p21 near PALMD (rs7543130; odds ratio (OR) = 1.20, P = 1.2 × 10-22) and on chromosome 2q22 in TEX41 (rs1830321; OR = 1.15, P = 1.8 × 10-13). Rs7543130 also associates with bicuspid aortic valve (BAV) (OR = 1.28, P = 6.6 × 10-10) and aortic root diameter (P = 1.30 × 10-8), and rs1830321 associates with BAV (OR = 1.12, P = 5.3 × 10-3) and coronary artery disease (OR = 1.05, P = 9.3 × 10-5). The results implicate both cardiac developmental abnormalities and atherosclerosis-like processes in the pathogenesis of AS. We show that several pathways are shared by CAD and AS. Causal analysis suggests that the shared risk factors of Lp(a) and non-high-density lipoprotein cholesterol contribute substantially to the frequent co-occurence of these diseases.
  •  
22.
  •  
23.
  • Kathiresan, Sekar, et al. (författare)
  • Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
  • 2008
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 189-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood concentrations of lipoproteins and lipids are heritable risk factors for cardiovascular disease. Using genome-wide association data from three studies (n = 8,816 that included 2,758 individuals from the Diabetes Genetics Initiative specific to the current paper as well as 1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables reported in a companion paper in this issue) and targeted replication association analyses in up to 18,554 independent participants, we show that common SNPs at 18 loci are reproducibly associated with concentrations of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and/or triglycerides. Six of these loci are new (P < 5 x 10(-8) for each new locus). Of the six newly identified chromosomal regions, two were associated with LDL cholesterol (1p13 near CELSR2, PSRC1 and SORT1 and 19p13 near CILP2 and PBX4), one with HDL cholesterol (1q42 in GALNT2) and five with triglycerides (7q11 near TBL2 and MLXIPL, 8q24 near TRIB1, 1q42 in GALNT2, 19p13 near CILP2 and PBX4 and 1p31 near ANGPTL3). At 1p13, the LDL-associated SNP was also strongly correlated with CELSR2, PSRC1, and SORT1 transcript levels in human liver, and a proxy for this SNP was recently shown to affect risk for coronary artery disease. Understanding the molecular, cellular and clinical consequences of the newly identified loci may inform therapy and clinical care.
  •  
24.
  • Khan, Abigail May, et al. (författare)
  • Cardiac Natriuretic Peptides, Obesity, and Insulin Resistance: Evidence from Two Community-Based Studies.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96:10, s. 3242-3249
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The natriuretic peptides play an important role in salt homeostasis and blood pressure regulation. It has been suggested that obesity promotes a relative natriuretic peptide deficiency, but this has been a variable finding in prior studies and the cause is unknown. Aim: The aim of this study was to examine the association between obesity and natriuretic peptide levels and evaluate the role of hyperinsulinemia and testosterone as mediators of this interaction. Methods: We studied 7770 individuals from the Framingham Heart Study (n = 3833, 54% women) and the Malmö Diet and Cancer study (n = 3918, 60% women). We examined the relation of plasma N-terminal pro-B-type natriuretic peptide levels (N-BNP) with obesity, insulin resistance, and various metabolic subtypes. Results: Obesity was associated with 6-20% lower levels of N-BNP (P < 0.001 in Framingham, P = 0.001 in Malmö), whereas insulin resistance was associated with 10-30% lower levels of N-BNP (P < 0.001 in both cohorts). Individuals with obesity who were insulin sensitive had only modest reductions in N-BNP compared with nonobese, insulin-sensitive individuals. On the other hand, individuals who were nonobese but insulin resistant had 26% lower N-BNP in Framingham (P < 0.001) and 10% lower N-BNP in Malmö (P < 0.001), compared with nonobese and insulin-sensitive individuals. Adjustment for serum-free testosterone did not alter these associations. Conclusions: In both nonobese and obese individuals, insulin resistance is associated with lower natriuretic peptide levels. The relative natriuretic peptide deficiency seen in obesity could be partly attributable to insulin resistance, and could be one mechanism by which insulin resistance promotes hypertension.
  •  
25.
  • Kraja, Aldi T., et al. (författare)
  • New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475000 Individuals
  • 2017
  • Ingår i: Circulation. - : LIPPINCOTT WILLIAMS & WILKINS. - 1942-325X .- 1942-3268. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.Methods and Results - Here, we augment the sample with 140886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, approximate to 475000), and the other in the subset of individuals of European descent (approximate to 423000). Twenty-one SNVs were genome-wide significant (P<5x10(-8) ) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.Conclusions - We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.
  •  
26.
  • Landenhed Smith, Maya, et al. (författare)
  • Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study.
  • 2015
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 4:1, s. 001513-001513
  • Tidskriftsartikel (refereegranskat)abstract
    • Community screening to guide preventive interventions for acute aortic disease has been recommended in high-risk individuals. We sought to prospectively assess risk factors in the general population for aortic dissection (AD) and severe aneurysmal disease in the thoracic and abdominal aorta.
  •  
27.
  • Magnusson, Martin, et al. (författare)
  • Low Plasma Level of Atrial Natriuretic Peptide Predicts Development of Diabetes: The Prospective Malmo Diet and Cancer Study.
  • 2012
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 97:2, s. 638-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context:The cardiac natriuretic peptides are involved in blood pressure regulation, and large cross-sectional studies have shown lower plasma levels of N-terminal pro-natriuretic peptide levels [N-terminal atrial natriuretic peptide (N-ANP) and N-terminal brain natriuretic peptide (N-BNP)] in patients with insulin resistance, obesity, and diabetes.Objective:In this study, we prospectively tested whether plasma levels of mid-regional ANP (MR-ANP) and N-BNP predict new-onset diabetes and long-term glucose progression.Design, Setting, and Patients:MR-ANP and N-BNP were measured in 1828 nondiabetic individuals of the Malmö Diet and Cancer cohort (mean age 60 yr; 61% women) who subsequently underwent a follow-up exam including an oral glucose tolerance test after a median follow-up time of 16 yr. Logistic regression was used to adjust for covariates.Results:During follow-up, 301 subjects developed new-onset diabetes. After full multivariate adjustment, MR-ANP was significantly inversely associated with incident diabetes (OR = 0.85; 95% CI = 0.73-0.99; P = 0.034) but not N-BNP (OR = 0.92; 95% CI = 0.80-1.06; P = 0.262). In fully adjusted linear regression models, the progression of fasting glucose during follow-up was significantly inversely related to baseline levels of MR-ANP (P = 0.004) but not N-BNP (P = 0.129). Quartile analyses revealed that the overall association was mainly accounted for by excess risk of incident diabetes in subjects belonging to the lowest quartile of MR-ANP. After full adjustment, the odds ratio for incident diabetes in the bottom compared with the top quartile of MR-ANP was 1.65 (OR = 1.08-2.51, P = 0.019) and 1.43 (OR = 1.04-1.96, P = 0.027) compared with all other subjects.Conclusion:Low plasma levels of MR-ANP predict development of future diabetes and glucose progression over time, suggesting a causal role of ANP deficiency in diabetes development.
  •  
28.
  •  
29.
  • Melander, Olle, et al. (författare)
  • Novel and conventional biomarkers for prediction of incident cardiovascular events in the community.
  • 2009
  • Ingår i: JAMA: The Journal of the American Medical Association. - : American Medical Association (AMA). - 1538-3598. ; 302:1, s. 49-57
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Prior studies have demonstrated conflicting results regarding how much information novel biomarkers add to cardiovascular risk assessment. OBJECTIVE: To evaluate the utility of contemporary biomarkers for predicting cardiovascular risk when added to conventional risk factors. DESIGN, SETTING, AND PARTICIPANTS: Cohort study of 5067 participants (mean age, 58 years; 60% women) without cardiovascular disease from Malmö, Sweden, who attended a baseline examination between 1991 and 1994. Participants underwent measurement of C-reactive protein (CRP), cystatin C, lipoprotein-associated phospholipase 2, midregional proadrenomedullin (MR-proADM), midregional proatrial natriuretic peptide, and N-terminal pro-B-type natriuretic peptide (N-BNP) and underwent follow-up until 2006 using the Swedish national hospital discharge and cause-of-death registers and the Stroke in Malmö register for first cardiovascular events (myocardial infarction, stroke, coronary death). MAIN OUTCOME MEASURES: Incident cardiovascular and coronary events. RESULTS: During median follow-up of 12.8 years, there were 418 cardiovascular and 230 coronary events. Models with conventional risk factors had C statistics of 0.758 (95% confidence interval [CI], 0.734 to 0.781) and 0.760 (0.730 to 0.789) for cardiovascular and coronary events, respectively. Biomarkers retained in backward-elimination models were CRP and N-BNP for cardiovascular events and MR-proADM and N-BNP for coronary events, which increased the C statistic by 0.007 (P = .04) and 0.009 (P = .08), respectively. The proportion of participants reclassified was modest (8% for cardiovascular risk, 5% for coronary risk). Net reclassification improvement was nonsignificant for cardiovascular events (0.0%; 95% CI, -4.3% to 4.3%) and coronary events (4.7%; 95% CI, -0.76% to 10.1%). Greater improvements were observed in analyses restricted to intermediate-risk individuals (cardiovascular events: 7.4%; 95% CI, 0.7% to 14.1%; P = .03; coronary events: 14.6%; 95% CI, 5.0% to 24.2%; P = .003). However, correct reclassification was almost entirely confined to down-classification of individuals without events rather than up-classification of those with events. CONCLUSIONS: Selected biomarkers may be used to predict future cardiovascular events, but the gains over conventional risk factors are minimal. Risk classification improved in intermediate-risk individuals, mainly through the identification of those unlikely to develop events.
  •  
30.
  • Newton-Cheh, Christopher, et al. (författare)
  • Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:3, s. 348-353
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the association of common variants at the NPPA-NPPB locus with circulating concentrations of the natriuretic peptides, which have blood pressure-lowering properties. We genotyped SNPs at the NPPA-NPPB locus in 14,743 individuals of European ancestry, and identified associations of plasma atrial natriuretic peptide with rs5068 (P = 8 x 10(-70)), rs198358 (P = 8 x 10(-30)) and rs632793 (P = 2 x 10(-10)), and of plasma B-type natriuretic peptide with rs5068 (P = 3 x 10(-12)), rs198358 (P = 1 x 10(-25)) and rs632793 (P = 2 x 10(-68)). In 29,717 individuals, the alleles of rs5068 and rs198358 that showed association with increased circulating natriuretic peptide concentrations were also found to be associated with lower systolic (P = 2 x 10(-6) and 6 x 10(-5), respectively) and diastolic blood pressure (P = 1 x 10(-6) and 5 x 10(-5)), as well as reduced odds of hypertension (OR = 0.85, 95% CI = 0.79-0.92, P = 4 x 10(-5); OR = 0.90, 95% CI = 0.85-0.95, P = 2 x 10(-4), respectively). Common genetic variants at the NPPA-NPPB locus found to be associated with circulating natriuretic peptide concentrations contribute to interindividual variation in blood pressure and hypertension.
  •  
31.
  •  
32.
  •  
33.
  • Padmanabhan, Sandosh, et al. (författare)
  • Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension
  • 2010
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 6:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%-2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 59 region of Uromodulin (UMOD; rs13333226, combined P value of 3.6x10(-11)). The minor G allele is associated with a lower risk of hypertension (OR [95% CI]: 0.87 [0.84-0.91]), reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860-0.991; p = 0.027). In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR) measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83-0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83-0.96], p = 0.003). In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.
  •  
34.
  • Patel, Riyaz S., et al. (författare)
  • Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events : A GENIUS-CHD Study of Individual Participant Data
  • 2019
  • Ingår i: Circulation. - 2574-8300. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk.METHODS: A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103 357 Europeans with established CHD at baseline from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/myocardial infarction), occurred in 13 040 of the 93 115 participants with available outcome data. Effect estimates were compared with case/control risk obtained from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) including 47 222 CHD cases and 122 264 controls free of CHD.RESULTS: Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline (GENIUSCHD odds ratio, 1.02; 95% CI, 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D odds ratio 1.20; 95% CI, 1.18-1.22; P for interaction < 0.001 compared with the GENIUS-CHD estimate. Similarly, no clear associations were identified for additional subsequent outcomes, including all-cause death, although we found a modest positive association between chromosome 9p21 and subsequent revascularization (odds ratio, 1.07; 95% CI, 1.04-1.09).CONCLUSIONS: In contrast to studies comparing individuals with CHD to disease-free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development.
  •  
35.
  • Saxena, Richa, et al. (författare)
  • Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
  • 2007
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 316:5829, s. 1331-1336
  • Tidskriftsartikel (refereegranskat)abstract
    • New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D - in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1 - and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
  •  
36.
  • Smith, Gustav, et al. (författare)
  • Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation.
  • 2010
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 56:21, s. 1713-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: the purpose of this study was to assess the predictive accuracy of conventional cardiovascular risk factors for incident heart failure and atrial fibrillation, and the added benefit of multiple biomarkers reflecting diverse pathophysiological pathways. BACKGROUND: heart failure and atrial fibrillation are interrelated cardiac diseases associated with substantial morbidity and mortality and increasing incidence. Data on prediction and prevention of these diseases in healthy individuals are limited. METHODS: in 5,187 individuals from the community-based MDCS (Malmö Diet and Cancer Study), we studied the performance of conventional risk factors and 6 biomarkers including midregional pro-atrial natriuretic peptide (MR-proANP), N-terminal pro-B-type natriuretic peptide (NT-proBNP), midregional pro-adrenomedullin, cystatin C, C-reactive protein (CRP), and copeptin. RESULTS: during a mean follow-up of 14 years, 112 individuals were diagnosed with heart failure and 284 individuals with atrial fibrillation. NT-proBNP (hazard ratio [HR]: 1.63 per SD, 95% confidence interval [CI]: 1.29 to 2.06, p < 0.001), CRP (HR: 1.57 per SD, 95% CI: 1.28 to 1.94, p < 0.001), and MR-proANP (HR: 1.26 per SD, 95% CI: 1.02 to 1.56, p = 0.03) predicted incident heart failure independently of conventional risk factors and other biomarkers. MR-proANP (HR: 1.62, 95% CI: 1.42 to 1.84, p < 0.001) and CRP (HR: 1.18, 95% CI: 1.03 to 1.34, p = 0.01) independently predicted atrial fibrillation. Addition of biomarkers to conventional risk factors improved c-statistics from 0.815 to 0.842 for heart failure and from 0.732 to 0.753 for atrial fibrillation and the integrated discrimination improvement for both diseases (p < 0.001). Net reclassification improvement (NRI) with biomarkers was observed in 22% of individuals for heart failure (NRI, p < 0.001) and in 7% for atrial fibrillation (NRI, p = 0.06), mainly due to up-classification of individuals who developed disease (heart failure: 29%, atrial fibrillation: 19%). Addition of CRP to natriuretic peptides did not improve discrimination or reclassification. CONCLUSIONS: conventional cardiovascular risk factors predict incident heart failure and atrial fibrillation with reasonable accuracy in middle-age individuals free from disease. Natriuretic peptides, but not other biomarkers, improve discrimination modestly for both diseases above and beyond conventional risk factors and substantially improve risk classification for heart failure.
  •  
37.
  • Smith, Gustav, et al. (författare)
  • Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure
  • 2016
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.
  •  
38.
  • Smith, Gustav, et al. (författare)
  • Genetic polymorphisms confer risk of atrial fibrillation in patients with heart failure: a population-based study.
  • 2013
  • Ingår i: European Journal of Heart Failure. - : Wiley. - 1879-0844 .- 1388-9842. ; 15:3, s. 250-257
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Atrial fibrillation (AF) is a frequent co-morbidity in heart failure (HF) associated with increased mortality, but little is known about the mechanisms underlying AF onset in HF patients. We evaluated the association of cardiovascular and genetic risk factors with AF in HF patients. METHODS AND RESULTS: Individuals hospitalized for HF (n = 1040; 500 with AF) were identified from a large, population-based cohort study (n = 30 447; 2339 with AF). Genetic polymorphisms in the chromosomal regions 4q25 (rs2200733) and 16q22 (rs2106261) associated with AF in genome-wide association studies were genotyped. Association of cardiovascular risk factors and polymorphisms with AF was tested in HF patients and the entire cohort using both prospective and non-time-dependent models. Cardiovascular risk factors-hypertension, body mass index, sex, smoking, diabetes, and myocardial infarction-were associated with AF in the entire cohort but not in HF patients. In contrast, polymorphisms on chromosomes 16q22 and 4q25 were associated with AF both in the entire cohort and in HF patients, conferring 75% [95% confidence interval (CI) 35-126, P = 2 × 10(-5)] and 57% (95% CI 18-109, P = 0.002) increased risk of AF per copy in HF patients, respectively. In the entire cohort, AF risk in the presence of HF was multiplicatively magnified by genotype for 16q22 (P for interaction = 7 × 10(-4)) but not 4q25 (P = 0.83). In prospective analyses excluding patients with AF diagnosis prior to or simultaneously with HF diagnosis, 16q22 but not 4q25 remained robustly associated with AF (hazard ratio 1.96, 95% CI 1.40-2.73, P = 8 × 10(-5)). The proportion of AF diagnoses in HF patients attributable to polymorphisms was 19% and 12%, respectively. CONCLUSIONS: A polymorphism in the ZFHX3 gene, encoding a cardiac transcription factor, was associated with increased AF risk in HF patients, and the genetic association with AF was more pronounced in HF patients than in the general population.
  •  
39.
  • Smith, Gustav, et al. (författare)
  • Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis.
  • 2012
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 1365-2796 .- 0954-6820.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genetic polymorphisms associated with common aetiologically complex diseases have recently been identified through genome-wide association studies. Direct-to-consumer genetic testing for such polymorphisms, with provision of absolute genetic risk estimates, is marketed by several commercial companies. Polymorphisms associated with atrial fibrillation (AF) have shown relatively large risk estimates but the robustness of such estimates across populations and study designs has not been investigated. Design: A systematic literature review with meta-analysis and assessment of between-study heterogeneity was performed for single-nucleotide polymorphisms (SNPs) in the six genetic regions associated with AF in genome-wide or candidate gene studies. Results: Data were identified from 18 samples of European ancestry (n=12,100 cases, 115,702 controls) for the SNP on chromosome 4q25 (rs220733), from 16 samples (n=12,694 cases, 132,602 controls) for the SNP on 16q22 (rs2106261) and from four samples (n=5,272 cases, 59,725 controls) for the SNP in KCNH2 (rs1805123). Only the publications in which the associations were initially reported were identified for SNPs on 1q21 and in GJA5 and IL6R, why meta-analyses were not performed for those SNPs. In overall random-effects meta-analyses, association with AF was observed for both SNPs on chromosomes 4q25 [odds ratio (OR) 1.67, 95% CI 1.50-1.86, P=2x10(-21) ] and 16q22 (OR 1.21, 95% CI 1.13-1.29, P=1x10(-8) ) from genome-wide studies, but not the SNP in KCNH2 from candidate gene studies (P=0.15). There was substantial effect heterogeneity across case-control and cross-sectional studies for both polymorphisms (I(2) =0.50-0.78, P<0.05), but not across prospective cohort studies (I(2) =0.39, P=0.15). Both polymorphisms were robustly associated with AF for each study design individually (P<0.05). Conclusions: In meta-analyses including up to 150,000 individuals, polymorphisms in two genetic regions were robustly associated with AF across all study designs but with substantial context-dependency of risk estimates. © 2012 The Association for the Publication of the Journal of Internal Medicine.
  •  
40.
  • Smith, Gustav, et al. (författare)
  • Genome-wide association studies of late-onset cardiovascular disease.
  • 2015
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 1095-8584 .- 0022-2828. ; 83:Apr 11, s. 131-141
  • Forskningsöversikt (refereegranskat)abstract
    • Human genetics is a powerful tool for discovering causal mediators of human disease and physiology. Cardiovascular diseases with late onset in the lifecourse have historically not been considered genetic diseases, but in recent years the contribution of a heritable factor has been established. More importantly, over the last decade genome-wide association studies (GWASs) have identified many loci associated with late-onset cardiovascular diseases including coronary artery disease, carotid artery disease, ischemic stroke, aortic aneurysm, peripheral vascular disease, atrial fibrillation, valvular disease and correlates of vascular and myocardial function. Here we review findings from GWASs considered statistically robust with regard to multiple testing (p<5×10(-8)) for late-onset cardiovascular diseases and traits. Although for only a handful of the 92 genetic loci described here have the mechanisms underlying disease association been established, new and previously unsuspected pathways have been implicated for several conditions. Examples include a role for NO signaling in myocardial repolarization and sudden cardiac death and a role for the protein sortilin in lipid metabolism and coronary artery disease. Genetic loci with multiple trait associations have also provided novel biological insights. For example, of the 46 genetic loci associated with coronary artery disease, only 16 are also associated with conventional risk factors for cardiovascular disease whereas the remaining two thirds may reflect novel pathways. Much work remains to functionally characterize genetic loci and for clinical utility, but accruing insights into the biological basis of cardiovascular aging in human populations promise to point to novel therapeutic and preventive strategies. This article is part of a Special Issue entitled 'SI:CV Aging'.
  •  
41.
  • Smith, Gustav, et al. (författare)
  • Genome-Wide Association Studies of the PR Interval in African Americans.
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10(-8)) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta = 5.1 msec per minor allele, 95% CI = 4.1-6.1, p = 3×10(-23)). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8-3.0, p = 3×10(-16)) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.
  •  
42.
  • Smith, Gustav, et al. (författare)
  • The Impact of Ancestry and Common Genetic Variants on QT Interval in African Americans.
  • 2012
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 5:6, s. 647-655
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: -Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death (SCD) and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval. METHODS AND RESULTS: -First, individual estimates of African and European ancestry were inferred from genome-wide single nucleotide polymorphism (SNP) data in seven population-based cohorts of African Americans (n=12 097) and regressed on measured QT interval from electrocardiograms. Second, imputation was performed for 2.8 million SNPs and a genome-wide association (GWA) study of QT interval performed in ten cohorts (n=13 105). There was no evidence of association between genetic ancestry and QT interval (p=0.94). Genome-wide significant associations (p<2.5x10(-8)) were identified with SNPs at two loci, upstream of the genes NOS1AP (rs12143842, p=2x10(-15)) and ATP1B1 (rs1320976, p=2x10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low p-values (p<10(-5)) were observed for SNPs at several other loci previously identified in GWA studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF and PLN. CONCLUSIONS: -We observed no difference in duration of cardiac repolarization with global genetic indices of African ancestry. In addition, our GWA study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include African Americans.
  •  
43.
  •  
44.
  •  
45.
  • Stitziel, Nathan O., et al. (författare)
  • Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease
  • 2016
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 374:12, s. 1134-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P = 4.2x10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P = 4.0x10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P = 2.0x10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P = 2.5x10(-7)). CONCLUSIONS We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease.
  •  
46.
  • Weng, Lu Chen, et al. (författare)
  • Heritability of Atrial Fibrillation
  • 2017
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Previous reports have implicated multiple genetic loci associated with AF, but the contributions of genome-wide variation to AF susceptibility have not been quantified. Methods and Results - We assessed the contribution of genome-wide single-nucleotide polymorphism variation to AF risk (single-nucleotide polymorphism heritability, h2 g) using data from 120 286 unrelated individuals of European ancestry (2987 with AF) in the population-based UK Biobank. We ascertained AF based on self-report, medical record billing codes, procedure codes, and death records. We estimated h2 g using a variance components method with variants having a minor allele frequency ≥1%. We evaluated h2 g in age, sex, and genomic strata of interest. The h2 g for AF was 22.1% (95% confidence interval, 15.6%-28.5%) and was similar for early- versus older-onset AF (≤65 versus >65 years of age), as well as for men and women. The proportion of AF variance explained by genetic variation was mainly accounted for by common (minor allele frequency, ≥5%) variants (20.4%; 95% confidence interval, 15.1%-25.6%). Only 6.4% (95% confidence interval, 5.1%-7.7%) of AF variance was attributed to variation within known AF susceptibility, cardiac arrhythmia, and cardiomyopathy gene regions. Conclusions - Genetic variation contributes substantially to AF risk. The risk for AF conferred by genomic variation is similar to that observed for several other cardiovascular diseases. Established AF loci only explain a moderate proportion of disease risk, suggesting that further genetic discovery, with an emphasis on common variation, is warranted to understand the causal genetic basis of AF.
  •  
47.
  • Wu, Connie, et al. (författare)
  • Novel microRNA regulators of atrial natriuretic peptide production
  • 2016
  • Ingår i: Molecular and Cellular Biology. - 0270-7306. ; 36:14, s. 1977-1987
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial natriuretic peptide (ANP) has a central role in regulating blood pressure in humans. Recently, microRNA 425 (miR-425) was found to regulate ANP production by binding to the mRNA of NPPA, the gene encoding ANP. mRNAs typically contain multiple predicted microRNA (miRNA)-binding sites, and binding of different miRNAs may independently or coordinately regulate the expression of any given mRNA. We used a multifaceted screening strategy that integrates bioinformatics, next-generation sequencing data, human genetic association data, and cellular models to identify additional functional NPPA-targeting miRNAs. Two novel miRNAs, miR-155 and miR-105, were found to modulate ANP production in human cardiomyocytes and target genetic variants whose minor alleles are associated with higher human plasma ANP levels. Both miR-155 and miR-105 repressed NPPA mRNA in an allele-specific manner, with the minor allele of each respective variant conferring resistance to the miRNA either by disruption of miRNA base pairing or by creation of wobble base pairing. Moreover, miR-155 enhanced the repressive effects of miR-425 on ANP production in human cardiomyocytes. Our study combines computational, genomic, and cellular tools to identify novel miRNA regulators of ANP production that could be targeted to raise ANP levels, which may have applications for the treatment of hypertension or heart failure.
  •  
48.
  • Young, William J., et al. (författare)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-48 av 48
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Newton-Cheh, Christo ... (46)
Melander, Olle (32)
Samani, Nilesh J. (16)
Kathiresan, Sekar (16)
Padmanabhan, Sandosh (14)
Smith, Gustav (13)
visa fler...
Almgren, Peter (13)
Hedblad, Bo (12)
Rotter, Jerome I. (12)
Psaty, Bruce M (12)
Salomaa, Veikko (11)
Caulfield, Mark J. (11)
Munroe, Patricia B. (11)
Loos, Ruth J F (11)
Lind, Lars (9)
Smith, J Gustav (9)
Wareham, Nicholas J. (9)
Orho-Melander, Marju (9)
Farrall, Martin (9)
Ellinor, Patrick T. (9)
Hayward, Caroline (9)
Tragante, Vinicius (9)
Asselbergs, Folkert ... (9)
Groop, Leif (8)
Perola, Markus (8)
Chasman, Daniel I. (8)
Boehnke, Michael (8)
Havulinna, Aki S. (8)
Verweij, Niek (8)
Nelson, Christopher ... (8)
Mahajan, Anubha (8)
Luan, Jian'an (8)
Lubitz, Steven A. (8)
Liu, Yongmei (8)
Sattar, Naveed (7)
Deloukas, Panos (7)
van Duijn, Cornelia ... (7)
Paré, Guillaume (7)
Jarvelin, Marjo-Riit ... (7)
Dominiczak, Anna F. (7)
Palmer, Colin N. A. (7)
Meitinger, Thomas (7)
Johnson, Toby (7)
Heckbert, Susan R (7)
Uitterlinden, André ... (7)
Morrison, Alanna C (7)
Elliott, Paul (7)
Tobin, Martin D (7)
Polasek, Ozren (7)
Mueller-Nurasyid, Ma ... (7)
visa färre...
Lärosäte
Lunds universitet (43)
Uppsala universitet (13)
Karolinska Institutet (8)
Umeå universitet (6)
Göteborgs universitet (4)
Stockholms universitet (2)
visa fler...
Malmö universitet (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy