SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ngatunga Benjamin) "

Sökning: WFRF:(Ngatunga Benjamin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Silas, Mathew Ogalo, et al. (författare)
  • Growth, mortality, exploitation rate and recruitment pattern of Octopus cyanea (Mollusca: Cephalopoda) in the WIO region : A case study from the Mafia Archipelago, Tanzania
  • 2021
  • Ingår i: Western Indian Ocean Journal of Marine Science. - : African Journals Online (AJOL). - 0856-860X .- 2683-6416. ; 20:1, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Octopus cyanea is a commercially important cephalopod in the Western Indian Ocean (WIO) region, but scientific information to inform management strategies for the species is limited. A study was conducted in 2014, 2015, 2017 and 2018 to investigate biological parameters including growth, mortality, exploitation rates and recruitment patterns in the sea around Mafia Archipelago, Tanzania. Virtual population analysis (VPA) indicated differential mortality between two sampling sites; the lowest and highest fishing mortality of F = 1.5yr-1 and F = 2.7yr-1 were observed in Bwejuu (Dorsal mantle length, DMT = 18-20 cm) and Jibondo (DMT = 8-12 cm) fishing villages, respectively. The maximum exploitation rate (Emax), which gives the maximum relative yield per recruit, was estimated at 0.380 and 0.379 for Jibondo and Bwejuu, respectively. The exploitation rates E 0.5, which corresponded to 50% of the unexploited stock relative biomass per recruit, were estimated at 0.248 for Jibondo and 0.247 for Bwejuu. These values differ greatly from the exploitation rates of 0.53 and 0.41 for Jibondo and Bwejuu, respectively, suggesting that the stock of O. cyanea is probably being overfished both in terms of yield per recruit and biomass per recruit. The stock-recruit pattern was observed to be continuous year-round, with the peak being between May and July. Since the peak in recruitment of both areas coincides with the south-east monsoon (SE Monsoon) and the level of maximum sustainable yield has been overshot, it is recommended that management plans are implemented that will reduce effort while increasing biomass, for example, implementing temporal octopus fishery closures at a village level. 
  •  
2.
  • Silas, Mathew O., et al. (författare)
  • Seascape configuration influences big blue octopus (Octopus cyanea) catches: Implications for a sustainable fishery
  • 2023
  • Ingår i: FISHERIES RESEARCH. - : Elsevier. - 0165-7836 .- 1872-6763. ; 264
  • Tidskriftsartikel (refereegranskat)abstract
    • Seascape configuration is known to influence fish distribution and abundance in coastal waters. However, there is little information regarding how the shape of the coastal seascape influences catches of landed fisheries species, particularly so in the understudied western Indian Ocean (WIO). With focus on big blue octopus (Octopus cyanea), which is a widely found cephalopod species in the WIO, we compared landed catches (biomass, catch rate, and density) in submerged and exposed reefs, and explored the influence of proximity to fishing villages and reef habitat size on octopus landings. We used fishery-dependent data collected between 2018 and 2020 from eight landing sites spread across the Tanzanian coast. We found a strong relationship between biomass of octopus catch and distance from fished reefs to fishing villages, with higher fished biomass on reefs farther away. Octopus densities were higher, while catch rates were lower, on reefs very close to (within one km distance from) fishing villages compared to more distant reefs. In general, submerged reefs provided higher catches than exposed reefs. The low octopus catches on the exposed reefs were attributed to high fishing pressure, while submerged reefs that are only accessible through diving provide optimal areas for octopuses to grow. Octopus catches were, however, not significantly affected by reef size. The findings suggest that management policies should propor-tionate fishing efforts to ensure sustainable exploitation of reefs and associated fishery resources.
  •  
3.
  •  
4.
  • Treleven, Charles R., et al. (författare)
  • Genetic analysis of Octopus cyanea reveals high gene flow in the South-West Indian Ocean
  • 2024
  • Ingår i: Ecology and Evolution. - 2045-7758. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Octopus cyanea (Gray, 1849), abundant in the South-West Indian Ocean (SWIO), constitutes a vital resource for both subsistence and commercial fisheries. However, despite this socioeconomic importance, and recent indications of overfishing, little is known about the population structure of O. cyanea in the region. To inform sustainable management strategies, this study assessed the spatio-temporal population structure and genetic variability of O. cyanea at 20 sites in the SWIO (Kenya, Tanzania, Mozambique, Madagascar, Mauritius, Rodrigues, and the Seychelle Islands) by complementary analysis of mitochondrial DNA (mtDNA) noncoding region (NCR) sequences and microsatellite markers. MtDNA analysis revealed a shallow phylogeny across the region, with demographic tests suggesting historic population fluctuations that could be linked to glacial cycles. Contrary to expectations, NCR variation was comparable to other mtDNA regions, indicating that the NCR is not a hypervariable region. Both nuclear and mtDNA marker types revealed a lack of genetic structure compatible with high gene flow throughout the region. As adults are sedentary, this gene flow likely reflects connectivity by paralarval dispersal. All samples reported heterozygote deficits, which, given the overall absence of structure, likely reflect ephemeral larval recruitment variability. Levels of mtDNA and nuclear variability were similar at all locations and congruent with those previously reported for harvested Octopodidae, implying resilience to genetic erosion by drift, providing current stock sizes are maintained. However, as O. cyanea stocks in the SWIO represent a single, highly connected population, fisheries may benefit from additional management measures, such as rotational closures aligned with paralarval ecology and spanning geopolitical boundaries. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy