SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nicklasson Hanna) "

Sökning: WFRF:(Nicklasson Hanna)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aaltonen, H. Laura, et al. (författare)
  • Airspace dimension assessment with nanoparticles as a proposed biomarker for emphysema
  • 2021
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 76:10, s. 1040-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • Airspace dimension assessment with nanoparticles (AiDA) is a novel method to measure distal airspace radius non-invasively. In this study, AiDA radii were measured in 618 individuals from the population-based Swedish CArdiopulmonary BioImaging Study, SCAPIS. Subjects with emphysema detected by computed tomography were compared to non-emphysematous subjects. The 47 individuals with mainly mild-to-moderate visually detected emphysema had significantly larger AiDA radii, compared with non-emphysematous subjects (326±48 μm vs 291±36 μm); OR for emphysema per 10 μm: 1.22 (1.13-1.30, p<0.0001). Emphysema according to CT densitometry was similarly associated with larger radii compared with non-emphysematous CT examinations (316±41 μm vs 291 μm±26 μm); OR per 10 μm: 1.16 (1.08-1.24, p<0.0001). The results are in line with comparable studies. The results show that AiDA is a potential biomarker for emphysema in individuals in the general population.
  •  
2.
  • Einarsdottir, Sigrun, et al. (författare)
  • Deficiency of SARS-CoV-2 T-cell responses after vaccination in long-term allo-HSCT survivors translates into abated humoral immunity.
  • 2022
  • Ingår i: Blood advances. - : American Society of Hematology. - 2473-9537 .- 2473-9529. ; 6:9, s. 2723-2730
  • Tidskriftsartikel (refereegranskat)abstract
    • Recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematological diseases are at risk of severe disease and death from COVID-19. To determine the safety and immunogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines, samples from 50 infection-naive allo-HSCT recipients (median, 92 months from transplantation, range, 7-340 months) and 39 healthy controls were analyzed for serum immunoglobulin G (IgG) against the receptor binding domain (RBD) within spike 1 (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; anti-RBD-S1 IgG) and for SARS-CoV-2-specific T-cell immunity, reflected by induction of T-cell-derived interferon-γ in whole blood stimulated ex vivo with 15-mer SI-spanning peptides with 11 amino acid overlapS1-spanning peptides. The rate of seroconversion was not significantly lower in allo-transplanted patients than in controls with 24% (12/50) and 6% (3/50) of patients remaining seronegative after the first and second vaccination, respectively. However, 58% of transplanted patients lacked T-cell responses against S1 peptides after 1 vaccination compared with 19% of controls (odds ratio [OR] 0.17; P = .009, Fisher's exact test) with a similar trend after the second vaccination where 28% of patients were devoid of detectable specific T-cell immunity, compared with 6% of controls (OR 0.18; P = .02, Fisher's exact test). Importantly, lack of T-cell reactivity to S1 peptides after vaccination heralded substandard levels (<100 BAU/mL) of anti-RBD-S1 IgG 5 to 6 months after the second vaccine dose (OR 8.2; P = .007, Fisher's exact test). We conclude that although allo-HSCT recipients achieve serum anti-RBD-S1 IgG against SARS-CoV-2 after 2 vaccinations, a deficiency of SARS-CoV-2-specific T-cell immunity may subsequently translate into insufficient humoral responses.
  •  
3.
  •  
4.
  •  
5.
  • Jakobsson, Jonas K F, et al. (författare)
  • Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease
  • 2018
  • Ingår i: BMC Pulmonary Medicine. - : BioMed Central Ltd.. - 1471-2466. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Respiratory tract deposition of airborne particles is a key link to understand their health impact. Experimental data are limited for vulnerable groups such as individuals with respiratory diseases. The aim of this study is to investigate the differences in lung deposition of nanoparticles in the distal lung for healthy subjects and subjects with respiratory disease. Methods: Lung deposition of nanoparticles (50 and 100 nm) was measured after a 10 s breath-hold for three groups: healthy never-smoking subjects (n = 17), asymptomatic (active and former) smokers (n = 15) and subjects with chronic obstructive pulmonary disease (n = 16). Measurements were made at 1300 mL and 1800 mL volumetric lung depth. Each subject also underwent conventional lung function tests, including post bronchodilator FEV1, VC, and diffusing capacity for carbon monoxide, DL,CO. Patients with previously diagnosed respiratory disease underwent a CT-scan of the lungs. Particle lung deposition fraction, was compared between the groups and with conventional lung function tests. Results: We found that the deposition fraction was significantly lower for subjects with emphysema compared to the other subjects (p = 0.001-0.01), but no significant differences were found between healthy never-smokers and smokers. Furthermore, the particle deposition correlated with pulmonary function tests, FEV1%Pred (p < 0.05), FEV1/VC%Pred (p < 0.01) and DL,CO (p < 0.0005) when all subjects were included. Furthermore, for subjects with emphysema, deposition fraction correlated strongly with DL,CO (Pearson's r = 0.80-0.85, p < 0.002) while this correlation was not found within the other groups. Conclusions: Lower deposition fraction was observed for emphysematous subjects and this can be explained by enlarged distal airspaces in the lungs. As expected, deposition increases for smaller particles and deeper inhalation. The observed results have implications for exposure assessment of air pollution and dosimetry of aerosol-based drug delivery of nanoparticles.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Muala, Ala, et al. (författare)
  • Respiratory Tract Deposition of Inhaled Wood Smoke Particles in Healthy Volunteers
  • 2015
  • Ingår i: Journal of Aerosol Medicine. - : Mary Ann Liebert Inc. - 1941-2711 .- 1941-2703. ; 28:4, s. 237-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Respiratory tract deposition of air pollution particles is a key to their adverse health effects. This study was aimed to determine the size-resolved deposition fraction (DF) of sooty wood smoke particles in the lungs of healthy subjects. The type of wood smoke investigated is typical for household air pollution from solid fuels, which is among the largest environmental health problems globally.Methods: Twelve healthy volunteers inhaled diluted wood smoke from incomplete soot-rich combustion in a common wood stove. The DF of smoke particles (10–500 nm) was measured during three 15-min exposures in each subject during spontaneous breathing. Lung function was measured using standard spirometry.Results: The total DFs by particle number concentration were 0.34±0.08. This can be compared with DFs of 0.21–0.23 in healthy subjects during previous experiments with wood pellet combustion. For particle mass, the total DFs found in this study were 0.22±0.06. DF and breathing frequency were negatively correlated as expected from model calculations (p<0.01).Conclusions: The DF of the investigated sooty wood smoke particles was higher than for previously investigated particles generated during more efficient combustion of biomass. Together with toxicological studies, which have indicated that incomplete biomass combustion particles rich in soot and polycyclic aromatic hydrocarbons (PAHs) are especially harmful, these data highlight the health risks of inadequate wood combustion.
  •  
11.
  •  
12.
  • Petersson-Sjögren, Madeleine, et al. (författare)
  • Airspace Dimension Assessment with Nanoparticles (AiDA) in Comparison to Established Pulmonary Function Tests
  • 2022
  • Ingår i: International Journal of Nanomedicine. - : Dove Medical Press Ltd. - 1176-9114 .- 1178-2013. ; 17, s. 2777-2790
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airspace Dimensions Assessment with nanoparticles (AiDA) is a new method for non-invasive measurement of pulmonary distal airspaces. The aim of this study was to compare AiDA measurements with other pulmonary function variables to better understand the potential of AiDA in a clinical context. Methods: AiDA measurements and pulmonary function tests were performed in 695 subjects as part of the Swedish CArdioPulmonary bioImage Study. The measurement protocol included spirometry, measurement of diffusing capacity of carbon monoxide, oscillometry and pulmonary computed tomography. AiDA indices were compared to all other pulmonary examination measurements using multivariate statistical analysis. Results: Our results show that AiDA measurements were significantly correlated with other pulmonary function examination indices, although covariance was low. We found that AiDA variables explained variance in the data that other lung function variables only influenced to a minor extent. Conclusion: We conclude that the AiDA method provides information about the lung that is inaccessible with more conventional lung function techniques. © 2022 Petersson-Sjögren et al.
  •  
13.
  •  
14.
  • Rissler, Jenny, et al. (författare)
  • A set-up for respiratory tract deposition efficiency measurements (15–5000 nm) and first results for a group of children and adults
  • 2017
  • Ingår i: Aerosol and Air Quality Research. - : AAGR Aerosol and Air Quality Research. - 1680-8584 .- 2071-1409. ; 17:6, s. 1244-1255
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to airborne particulate matter is associated with a number of negative health effects ranging from respiratorydiseases to systemic effects and cancer. One important factor for understanding the health effects is the individual variationin the respiratory tract deposition of inhaled particles. In this study, we describe an experimental set-up for size-resolvedmeasurements of the lung deposited fraction of airborne particles, covering the diameter range from 15 to 5000 nm. Theset-up includes a system for generating a stable aerosol with a sufficiently broad size distribution. We used a scanningmobility particle sizer and an aerodynamic particle sizer to determine particle number and size. The set-up was used toinvestigate individual differences in the deposition fraction (DF) of particles in the respiratory tract for a group of 67subjects of both sexes aged 7–70 years. The measured DF was applied to two model aerosols, one representing an urbanenvironment and one a rural environment, and the particle deposition rates were derived (i.e., the deposited amount ofparticles per unit time). Furthermore, the deposition rates were normalized to lung surface area and body mass – two dosemeasures that are considered relevant for the health effects of airborne particles. In addition to validation of the set-up, weshow that there is a large individual variation in DF, with some subjects having a DF that is more than twice as high as thatof others. Although we observe differences in the DF between different subgroups, most individual variation wasexplained neither by age nor by gender. When normalizing the deposition rates to lung surface area or body mass, thedeposition rates of children become significantly higher than those of adults. Furthermore, the individual variability islarger for the lung surface area or body mass normalized deposition rates than for DF
  •  
15.
  •  
16.
  • Rissler, Jenny, et al. (författare)
  • Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function : An experimental study in healthy children and adults
  • 2017
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. Method: In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. Results: A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). Conclusions: To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy