SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nikutta Robert) "

Sökning: WFRF:(Nikutta Robert)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fan, Lulu, 1982, et al. (författare)
  • Infrared Spectral Energy Distribution Decomposition of Wise-Selected, Hyperluminous Hot Dust-Obscured Galaxies
  • 2016
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 823:2, s. Art. no. 107-
  • Tidskriftsartikel (refereegranskat)abstract
    • We utilize a Bayesian approach to fit the observed mid-IR-To-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous , with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at , suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ( K) and high IR luminosity of cold dust. The relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed properties in Hot DOGs by employing a physical model of galaxy evolution. This result suggests that Hot DOGs may lie at or close to peaks of both star formation and black hole growth histories, and represent a transit phase during the evolutions of massive galaxies, transforming them from the dusty starburst-dominated phase to the optically bright QSO phase.
  •  
2.
  • Juneau, Stéphanie, et al. (författare)
  • The Black Hole-Galaxy Connection : Interplay between Feedback, Obscuration, and Host Galaxy Substructure
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 925:2
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing evidence for physical influence between supermassive black holes and their host galaxies. We present a case study of the nearby galaxy NGC 7582, for which we find evidence that galactic substructure plays an important role in affecting the collimation of ionized outflows as well as contributing to the heavy active galactic nucleus (AGN) obscuration. This result contrasts with a simple, small-scale AGN torus model, according to which AGN-wind collimation may take place inside the torus itself, at subparsec scales. Using 3D spectroscopy with the Multi Unit Spectroscopic Explorer instrument, we probe the kinematics of the stellar and ionized gas components as well as the ionization state of the gas from a combination of emission-line ratios. We report for the first time a kinematically distinct core (KDC) in NGC 7582, on a scale of ∼600 pc. This KDC coincides spatially with dust lanes and starbursting complexes previously observed. We interpret it as a circumnuclear ring of stars and dusty, gas-rich material. We obtain a clear view of the outflowing cones over kiloparsec scales and demonstrate that they are predominantly photoionized by the central engine. We detect the back cone (behind the galaxy) and confirm previous results of a large nuclear obscuration of both the stellar continuum and H II regions. While we tentatively associate the presence of the KDC with a large-scale bar and/or a minor galaxy merger, we stress the importance of gaining a better understanding of the role of galaxy substructure in controlling the fueling, feedback, and obscuration of AGNs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy