SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Jonas A 1971) "

Sökning: WFRF:(Nilsson Jonas A 1971)

  • Resultat 1-50 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, U. W., et al. (författare)
  • Validation and development of MTH1 inhibitors for treatment of cancer
  • 2016
  • Ingår i: Annals of Oncology. - : Elsevier BV. - 0923-7534 .- 1569-8041. ; 27:12, s. 2275-2283
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. Material and methods: Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. Results: Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. Conclusion: We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.
  •  
2.
  • Biederstädt, A., et al. (författare)
  • SUMO pathway inhibition targets an aggressive pancreatic cancer subtype
  • 2020
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 69, s. 1472-1482
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. Design: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. Results: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. Conclusion: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype. © 2020 American Medical Association. All rights reserved.
  •  
3.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
4.
  • Hofving, Tobias, 1989, et al. (författare)
  • The Microenvironment of Small Intestinal Neuroendocrine Tumours Contains Lymphocytes Capable of Recognition and Activation after Expansion
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary The body's immune system can recognize tumors because they often contain proteins that are either different from or more abundant than in normal cells. Here, we characterised the immune cells of a rare tumor type called small-intestinal neuroendocrine tumors (SINET). We find that so called tumour-infiltrating lymphocytes (TILs) can be grown in the laboratory and activated by challenging them with digested tumor. This study provides insights into the largely unknown SINET immune landscape and reveals the anti-tumour reactivity of TILs, which might merit adoptive T cell transfer as a feasible treatment option for patients with SINET. Traditionally, immune evasion and immunotherapy have been studied in cancers with a high mutational load such as melanoma or lung cancer. In contrast, small intestinal neuroendocrine tumours (SINETs) present a low frequency of somatic mutations and are described as genetically stable tumours, rendering immunotherapies largely unchartered waters for SINET patients. SINETs frequently metastasise to the regional lymph nodes and liver at the time of diagnosis, and no curative treatments are currently available for patients with disseminated disease. Here, we characterised the immune landscape of SINET and demonstrated that tumour-infiltrating lymphocytes (TILs) can be expanded and activated during autologous tumour challenge. The composition of lymphocyte subsets was determined by immunophenotyping of the SINET microenvironment in one hepatic and six lymph node metastases. TILs from these metastases were successfully grown out, enabling immunophenotyping and assessment of PD-1 expression. Expansion of the TILs and exposure to autologous tumour cells in vitro resulted in increased T lymphocyte degranulation. This study provides insights into the largely unknown SINET immune landscape and reveals the anti-tumour reactivity of TILs, which might merit adoptive T cell transfer as a feasible treatment option for patients with SINET.
  •  
5.
  • Einarsdottir, Berglind Osk, 1979, et al. (författare)
  • Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions.
  • 2014
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 5:20, s. 9609-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of novel therapies against melanoma would benefit from individualized tumor models to ensure the rapid and accurate identification of biomarkers of therapy response. Previous studies have suggested that patient-derived xenografts (PDXes) could be useful. However, the utility of PDXes in guiding real-time treatment decisions has only been reported in anecdotal forms. Here tumor biopsies from patients with stage III and IV metastatic malignant melanoma were transplanted into immunocompromised mice to generate PDXes. 23/26 melanoma biopsies generated serially transplantable PDX models, and their histology, mutation status and expression profile resembled their corresponding patient biopsy. The potential treatment for one patient was revealed by an in vitro drug screen and treating PDXes with the MEK inhibitor trametinib. In another patient, the BRAF mutation predicted the response of both the patient and its corresponding PDXes to MAPK-targeted therapy. Importantly, in this unselected group of patients, the time from biopsy for generation of PDXes until death was significantly longer than the time required to reach the treatment phase of the PDXes. Thus, it could be clinically meaningful to use this type of platform for melanoma patients as a pre-selection tool in clinical trials.
  •  
6.
  • Forsberg, Elin, et al. (författare)
  • HER2 CAR-T Cells Eradicate Uveal Melanoma and T-cell Therapy-Resistant Human Melanoma in IL2 Transgenic NOD/SCID IL2 Receptor Knockout Mice
  • 2019
  • Ingår i: Cancer Research. - 0008-5472. ; 79:5, s. 899-904
  • Tidskriftsartikel (refereegranskat)abstract
    • Chimeric antigen receptors (CAR) can transmit signals akin to those from activated T-cell receptors when bound to a cell surface target. CAR-expressing T cells against CD19 can cause curative effects in leukemia and lymphoma and is approved for clinical use. However, no CAR-T therapy is currently approved for use in solid tumors. We hypothesize that the resistance of solid tumors to CAR-T can be overcome by similar means as those used to reactivate tumor-infiltrating T lymphocytes (TIL), for example, by cytokines or immune checkpoint blockade. Here we demonstrate that CAR-T cells directed against HER2 can kill uveal and cutaneous melanoma cells in vitro and in vivo. Curative effects in vivo were only observed in xenografts grown in a NOD/SCID IL2 receptor gamma (NOG) knockout mouse strain transgenic for human IL2. The effect was target-specific, as CRISPR/Cas9-mediated disruption of HER2 in the melanoma cells abrogated the killing effect of the CAR-T cells. The CAR-T cells were also able to kill melanoma cells from patients resistant to adoptive T-cell transfer (ACT) of autologous TILs. Thus, CAR-T therapy represents an option for patients that do not respond to immunotherapy with ACT of TIL or immune checkpoint blockade. In addition, our data highlight the use of IL2 transgenic NOG mice as models to prove efficacy of CAR-T-cell products, possibly even in a personalized manner. Significance: These findings demonstrate that a novel humanized mouse model can help clinical translation of CAR-T cells against uveal and cutaneous melanoma that do not respond to TIL therapy or immune checkpoint blockade.
  •  
7.
  • Forsberg, Elin, et al. (författare)
  • Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs
  • 2023
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary CAR-T cells are immune cells equipped with a claw that enable them to bind cancer cells. Usually, CAR-T cells are made using immune cells from blood. Here, we tested the hypothesis that also immune cells that reside in the tumor, so called tumor-infiltrating lymphocytes, can also be modified to carry the claw. This may mean that these cells, called CAR-TILs, will be able to attack cancer cells in two ways, using the claw or binding using its normal protein on the cell surface, the so-called T cell receptor. We show that CAR-TILs can be generated, and that they can kill melanoma cells in cell culture and in mice. Finally, to prepare for clinical trials, we also assess if CAR-TILs can be safe in a human cancer patient-like model, a companion dog suffering from cancer. Our data suggest that CAR-TILs may be a way to treat patients with melanoma but human clinical trials are needed. Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma.
  •  
8.
  • Liang, Frank, et al. (författare)
  • A Fraction of CD8+T Cells from Colorectal Liver Metastases Preferentially Repopulate Autologous Patient-Derived Xenograft Tumors as Tissue-Resident Memory T Cells
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Treatment options for colorectal cancer (CRC) patients with liver metastases are often limited to liver surgery with or without chemotherapy. However, not all patients present operable colorectal liver metastases (CRLMs). Thus, alternative therapies that exploit the anti-tumor potential of tumor-infiltrating lymphocytes (TILs) are being evaluated. The establishment of markers connecting the phenotype to the function of tumor-reactive CD8+ TILs could aid diagnostic and therapeutic advances. In this regard, tissue-resident memory T cells (T-RM cells) could be a potential candidate for therapies targeting TILs. Putative tumor-reactive T-RM cells among CD8+ TILs likely co-express CD103 and CD39, since these markers indicate stable tumor residency and repeated response to antigens from the tumor environment, respectively. Our phenotypic and functional analyses of TILs in CRLM, with a specific focus on CD103+CD8+ T-RM cells, may guide the improvement of TIL-mediated CRC treatments. The diversity of T cells in the human liver may reflect the composition of TILs in CRLM. Our ex vivo characterization of CRLM vs. adjacent liver tissue detected CD103+CD39+CD8+ T-RM cells predominantly in CRLM, which prompted further assessments. These T-RM cells responded to cognate antigens in vitro. As functional activities of autologous TILs are central to the implementation of personalized cancer treatments, we applied a patient-derived xenograft (PDX) model to monitor TILs' capacity to control CRLM-derived tumors in vivo. We established PDX mice with CRLMs from two patients, and in vitro expansion of their respective TILs resulted in opposing CD4+ vs. CD8+ TIL ratios. These CRLMs also displayed mutated KRAS, which enabled trametinib-mediated inhibition of MEK. Regardless of the TIL subset ratio, persistent or transient control of CRLM-derived tumors of limited size by the transferred TILs was observed only after trametinib treatment. Of note, a portion of transferred TILs was observed as CD103+CD8+ T-RM cells that strictly accumulated within the autologous CRLM-derived tumor rather than in the spleen or blood. Thus, the predominance of CD103+CD39+CD8+ T-RM cells in CRLM relative to the adjacent liver and the propensity of CD103+CD8+ T-RM cells to repopulate the autologous tumor may identify these TILs as strategic targets for therapies against advanced CRC.
  •  
9.
  • Lunavat, Taral R, et al. (författare)
  • BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:29
  • Tidskriftsartikel (refereegranskat)abstract
    • The BRAF inhibitors vemurafenib and dabrafenib can be used to treat patients with metastatic melanomas harboring BRAF(V600) mutations. Initial antitumoral responses are often seen, but drug-resistant clones with reactivation of the MEK-ERK pathway soon appear. Recently, the secretome of tumor-derived extracellular vesicles (EVs) has been ascribed important functions in cancers. To elucidate the possible functions of EVs in BRAF-mutant melanoma, we determined the RNA content of the EVs, including apoptotic bodies, microvesicles, and exosomes, released from such cancer cells after vemurafenib treatment. We found that vemurafenib significantly increased the total RNA and protein content of the released EVs and caused significant changes in the RNA profiles. RNA sequencing and quantitative PCR show that cells and EVs from vemurafenib-treated cell cultures and tumor tissues harvested from cell-derived and patient-derived xenografts harbor unique miRNAs, especially increased expression of miR-211-5p. Mechanistically, the expression of miR-211-5p as a result of BRAF inhibition was induced by increased expression of MITF that regulates the TRPM1 gene resulting in activation of the survival pathway. In addition, transfection of miR-211 in melanoma cells reduced the sensitivity to vemurafenib treatment, whereas miR-211-5p inhibition in a vemurafenib resistant cell line affected the proliferation negatively. Taken together, our results show that vemurafenib treatment induces miR-211-5p up-regulation in melanoma cells both in vitro and in vivo, as well as in subsets of EVs, suggesting that EVs may provide a tool to understand malignant melanoma progression.
  •  
10.
  • Sah, Vasu R., et al. (författare)
  • Chemokine Analysis in Patients with Metastatic Uveal Melanoma Suggests a Role for CCL21 Signaling in Combined Epigenetic Therapy and Checkpoint Immunotherapy
  • 2023
  • Ingår i: Cancer Research Communications. ; 3:5, s. 884-895
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Patients with metastatic uveal melanoma have limited therapeutic options and high mortality rate so new treatment options are needed.Patients and Methods: We previously reported that patients treated with the PD-1 inhibitor pembrolizumab and the histone deacetylase inhibitor entinostat in the PEMDAC trial, experienced clinical benefits if their tu-mor originated from iris or was wildtype for BAP1 tumor suppressor gene. Here we present the 2-year follow-up of the patients in the PEMDAC trial and identify additional factors that correlate with response or survival.Results: Durable responses were observed in 4 patients, with additional 8 patients exhibiting a stable disease. The median overall survival was 13.7 months. Grade 3 adverse events were reported in 62% of the patients, but they were all manageable. No fatal toxicity was observed. Activity of thymidine kinase 1 in plasma was higher in patients with stable disease or who progressed on treatment, compared with those with partial response. Chemokines and cytokines were analyzed in plasma. Three chemokines were significantly different when comparing patients with and without response. One of the factors, CCL21, was higher in the plasma of respond-ing patients before treatment initiation but decreased in the same patients upon treatment. In tumors, CCL21 was expressed in areas resembling ter -tiar y lymphoid structures (TLS). High plasma levels of CCL21 and presence of TLS-like regions in the tumor correlated with longer survival.Conclusions: This study provides insight into durable responses in the PEMDAC trial, and describes dynamic changes of chemokines and cytokines in the blood of these patients.Significance: The most significant finding from the 2-year follow-up study of the PEMDAC trial was that high CCL21 levels in blood was associated with response and survival. CCL21 was also expressed in TLS-like regions and presence of these regions was associated with longer survival. These analyses of soluble and tumor markers can inform on predictive biomark-ers needing validation and become hypothesis generating for experimental research.
  •  
11.
  • Bhadury, Joydeep, et al. (författare)
  • BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 111:26
  • Tidskriftsartikel (refereegranskat)abstract
    • The bromodomain and extraterminal (BET) domain family of proteins binds to acetylated lysines on histones and regulates gene transcription. Recently, BET inhibitors (BETi) have been developed that show promise as potent anticancer drugs against various solid and hematological malignancies. Here we show that the structurally novel and orally bioavailable BET inhibitor RVX2135 inhibits proliferation and induces apoptosis of lymphoma cells arising in Myc-transgenic mice in vitro and in vivo. We find that BET inhibition exhibits broad transcriptional effects in Myc-transgenic lymphoma cells affecting many transcription factor networks. By examining the genes induced by BETi, which have largely been ignored to date, we discovered that these were similar to those induced by histone deacetylase inhibitors (HDACi). HDACi also induced cell-cycle arrest and cell death of Myc-induced murine lymphoma cells and synergized with BETi. Our data suggest that BETi sensitize Myc-overexpressing lymphoma cells partly by inducing HDAC-silenced genes, and suggest synergistic and therapeutic combinations by targeting the genetic link between BETi and HDACi.
  •  
12.
  • Bhadury, Joydeep, et al. (författare)
  • Identification of tumorigenic and therapeutically actionable mutations in transplantable mouse tumor cells by exome sequencing.
  • 2013
  • Ingår i: Oncogenesis. - : Springer Science and Business Media LLC. - 2157-9024. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer development occurs in response to the successive accumulation of mutations that eventually targets key regulators of cell proliferation. As most mutations likely occur randomly, cancer driver mutations can only be found if they are recurrent. Here we use exome sequencing of the mouse cell lines Panc02, L1210 and Colon 26 to identify genetic alterations (single-nucleotide polymorphisms and small insertion and deletions) that occurred in three different strains of mice and that resulted in tumorigenesis. We identify known mutations in genes like Kras, Cdkn2a/b, Smad4 and Trp53 and a large list of genes whose causal link to cancer is unknown. Interestingly, by screening a compound library we find that the identified oncogenic Kras mutation in Colon 26 cells correlates with its sensitivity to MEK inhibitors in vitro and in vivo. Our analysis of these mouse tumor exomes show that their manageable number of mutations could facilitate the identification of novel mutations or pathways driving tumor development. Furthermore, their use as tools is now enhanced as they can be used to create syngenic transplant models for utilization in drug discovery and validation. Finally, by showing that Kras mutant Colon 26 cells are sensitive to MEK inhibitors, we provide one proof-of-principle experiment that a platform containing targeted resequencing and drug screens could be a valuable addition in the clinic to devise anti-cancer drug schemes.
  •  
13.
  • Einarsdottir, Berglind Osk, 1979, et al. (författare)
  • A patient-derived xenograft pre-clinical trial reveals treatment responses and a resistance mechanism to karonudib in metastatic melanoma
  • 2018
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Karonudib (TH1579) is a novel compound that exerts anti-tumor activities and has recently entered phase I clinical testing. The aim of this study was to conduct a pre-clinical trial in patient-derived xenografts to identify the possible biomarkers of response or resistance that could guide inclusion of patients suffering from metastatic melanoma in phase II clinical trials. Patient-derived xenografts from 31 melanoma patients with metastatic disease were treated with karonudib or a vehicle for 18 days. Treatment responses were followed by measuring tumor sizes, and the models were categorized in the response groups. Tumors were harvested and processed for RNA sequencing and protein analysis. To investigate the effect of karonudib on T-cell-mediated anti-tumor activities, tumor-infiltrating T cells were injected in mice carrying autologous tumors and the mice treated with karonudib. We show that karonudib has heterogeneous anti-tumor effect on metastatic melanoma. Thus, based on the treatment responses, we could divide the 31 patient-derived xenografts in three treatment groups: progression group (32%), suppression group (42%), and regression group (26%). Furthermore, we show that karonudib has anti-tumor effect, irrespective of major melanoma driver mutations. Also, we identify high expression of ABCB1, which codes for p-gp pumps as a resistance biomarker. Finally, we show that karonudib treatment does not hamper T-cell-mediated anti-tumor responses. These findings can be used to guide future use of karonudib in clinical use with a potential approach as precision medicine.
  •  
14.
  • Funck-Brentano, Elisa, et al. (författare)
  • BET bromodomain inhibitor HMBA synergizes with MEK inhibition in treatment of malignant glioma
  • 2021
  • Ingår i: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 16:1, s. 54-63
  • Tidskriftsartikel (refereegranskat)abstract
    • (1) Background: BET bromodomain proteins regulate transcription by binding acetylated histones and attracting key factors for, e.g., transcriptional elongation. BET inhibitors have been developed to block pathogenic processes such as cancer and inflammation. Despite having potent biological activities, BET inhibitors have still not made a breakthrough in clinical use for treating cancer. Multiple resistance mechanisms have been proposed but thus far no attempts to block this in glioma has been made. (2) Methods: Here, we have conducted a pharmacological synergy screen in glioma cells to search for possible combination treatments augmenting the apoptotic response to BET inhibitors. We first used HMBA, a compound that was developed as a differentiation therapy four decades ago but more recently was shown to primarily inhibit BET bromodomain proteins. Data was also generated using other BET inhibitors. (3) Results: In the synergy screen, we discovered that several MEK inhibitors can enhance apoptosis in response to HMBA in rat and human glioma cells in vitro as well as in vivo xenografts. The combination is not unique to HMBA but also other BET inhibitors such as JQ1 and I-BET-762 can synergize with MEK inhibitors. (4) Conclusions: Our findings validate a combination therapy previously demonstrated to exhibit anti-cancer activities in multiple other tumour types but which appears to have been lost in translation to the clinic.
  •  
15.
  • Hoellein, Alexander, et al. (författare)
  • Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma.
  • 2014
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 124:13, s. 2081-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Myc oncogenic transcription factors (c-Myc, N-Myc, and L-Myc) coordinate the control of cell growth, division, and metabolism. In cancer, Myc overexpression is often associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system (eg, SCF(Skp2)-directed destruction of the Cdk inhibitor p27(Kip1)). We reasoned that Myc would also regulate SUMOylation, a related means of posttranslational modification of proteins, and that this circuit would play essential roles in Myc-dependent tumorigenesis. Here, we report marked increases in the expression of genes that encode regulators and components of the SUMOylation machinery in mouse and human Myc-driven lymphomas, resulting in hyper-SUMOylation in these tumors. Further, inhibition of SUMOylation by genetic means disables Myc-induced proliferation, triggering G2/M cell-cycle arrest, polyploidy, and apoptosis. Using genetically defined cell models and conditional expression systems, this response was shown to be Myc specific. Finally, in vivo loss-of-function and pharmacologic studies demonstrated that inhibition of SUMOylation provokes rapid regression of Myc-driven lymphoma. Thus, targeting SUMOylation represents an attractive therapeutic option for lymphomas with MYC involvement.
  •  
16.
  •  
17.
  • Härtlova, Anetta, et al. (författare)
  • DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti-Microbial Innate Immunity.
  • 2015
  • Ingår i: Immunity. - : Elsevier BV. - 1097-4180 .- 1074-7613. ; 42:2, s. 332-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysfunction in Ataxia-telangiectasia mutated (ATM), a central component of the DNA repair machinery, results in Ataxia Telangiectasia (AT), a cancer-prone disease with a variety of inflammatory manifestations. By analyzing AT patient samples and Atm(-/-) mice, we found that unrepaired DNA lesions induce type I interferons (IFNs), resulting in enhanced anti-viral and anti-bacterial responses in Atm(-/-) mice. Priming of the type I interferon system by DNA damage involved release of DNA into the cytoplasm where it activated the cytosolic DNA sensing STING-mediated pathway, which in turn enhanced responses to innate stimuli by activating the expression of Toll-like receptors, RIG-I-like receptors, cytoplasmic DNA sensors, and their downstream signaling partners. This study provides a potential explanation for the inflammatory phenotype of AT patients and establishes damaged DNA as a cell intrinsic danger signal that primes the innate immune system for a rapid and amplified response to microbial and environmental threats.
  •  
18.
  • Jespersen, Henrik, et al. (författare)
  • Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model.
  • 2017
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 -a melanoma PDX model where tumor cells and tumor-infiltrating T cells from the same patient are transplanted sequentially in non-obese diabetic/severe combined immune-deficient/common gamma chain (NOG/NSG) knockout mouse. Key to T-cell survival/effect in this model is the continuous presence of interleukin-2 (IL-2). Tumors that grow in PDXv2.0 are eradicated if the autologous tumor cells and T cells come from a patient that exhibited an objective response to ACT in the clinic. However, T cells from patients that are non-responders to ACT cannot kill tumor cells in PDXv2.0. Taken together, PDXv2.0 provides the potential framework to further model genetically diverse human cancers for assessing the efficacy of immunotherapies as well as combination therapies.Combining different types of immune therapies might benefit certain patients. Here, the authors develop an autologous immune-humanized melanoma mouse model that allows the preclinical assessment of cancer cell-T cell interactions from each individual patient and the benefits of immunotherapies combinations.
  •  
19.
  • Jespersen, Henrik, et al. (författare)
  • Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): protocol for a multicenter phase II open label study.
  • 2019
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While recent years have seen a revolution in the treatment of metastatic cutaneous melanoma, no treatment has yet been able to demonstrate any prolonged survival in metastatic uveal melanoma. Thus, metastatic uveal melanoma remains a disease with an urgent unmet medical need. Reports of treatment with immune checkpoint inhibitors have thus far been disappointing. Based on animal experiments, it is reasonable to hypothesize that the effect of immunotherapy may be augmented by epigenetic therapy. Proposed mechanisms include enhanced expression of HLA class I and cancer antigens on cancer cells, as well as suppression of myeloid suppressor cells.The PEMDAC study is a multicenter, open label phase II study assessing the efficacy of concomitant use of the PD1 inhibitor pembrolizumab and the class I HDAC inhibitor entinostat in adult patients with metastatic uveal melanoma. Primary endpoint is objective response rate. Eligible patients have histologically confirmed metastatic uveal melanoma, ECOG performance status 0-1, measurable disease as per RECIST 1.1 and may have received any number of prior therapies, with the exception of anticancer immunotherapy. Twenty nine patients will be enrolled. Patients receive pembrolizumab 200mg intravenously every third week in combination with entinostat 5mg orally once weekly. Treatment will continue until progression of disease or intolerable toxicity or for a maximum of 24months.The PEMDAC study is the first trial to assess whether the addition of an HDAC inhibitor to anti-PD1 therapy can yield objective anti-tumoral responses in metastatic UM.ClinicalTrials.gov registration number: NCT02697630 . (Registered 3 March 2016). EudraCT registration number: 2016-002114-50.
  •  
20.
  • Karlsson, Joakim, et al. (författare)
  • Molecular profiling of driver events in metastatic uveal melanoma
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastatic uveal melanoma is less well understood than its primary counterpart, has a distinct biology compared to skin melanoma, and lacks effective treatments. Here we genomically profile metastatic tumors and infiltrating lymphocytes. BAP1 alterations are overrepresented and found in 29/32 of cases. Reintroducing a functional BAP1 allele into a deficient patient-derived cell line, reveals a broad shift towards a transcriptomic subtype previously associated with better prognosis of the primary disease. One outlier tumor has ahigh mutational burden associated with UV-damage. CDKN2A deletions also occur, which are rarely present in primaries. A focused knockdown screen is used to investigate overexpressed genesassociated withcopy number gains. Tumor-infiltrating lymphocytes are in several cases found tumor-reactive, but expression of the immune checkpoint receptors TIM-3, TIGIT and LAG3 is also abundant. This study represents the largest whole-genome analysis of uveal melanoma to date, and presents an updated view of the metastatic disease. © 2020, The Author(s).
  •  
21.
  • Kiffin, Roberta, et al. (författare)
  • Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2
  • 2018
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In patients with acute myeloid leukemia (AML), treatment with histamine dihydrochloride (HDC) and low-dose IL-2 (HDC/ IL-2) in the post-chemotherapy phase has been shown to reduce the incidence of leukemic relapse. The clinical benefit of HDC/ IL-2 is pronounced in monocytic forms of AML, where the leukemic cells express histamine type 2 receptors (H2R) and the NAPDH oxidase-2 (NOX2). HDC ligates to H(2)Rs to inhibit NOX2-derived formation of reactive oxygen species, but details regarding the anti-leukemic actions of HDC remain to be elucidated. Here, we report that human NOX2(+) myelomonocytic/monocytic AML cell lines showed increased expression of maturation markers along with reduced leukemic cell proliferation after exposure to HDC in vitro. These effects of HDC were absent in corresponding leukemic cells genetically depleted of NOX2 (NOX2(-/-)). We also observed that exposure to HDC altered the expression of genes involved in differentiation and cell cycle progression in AML cells and that these effects required the presence of NOX2. HDC promoted the differentiation also of primary monocytic, but not non-monocytic, AML cells in vitro. In a xenograft model, immunodeficient NOG mice were inoculated with wild-type or NOX2(-/-) human monocytic AML cells and treated with HDC in vivo. The administration of HDC reduced the in vivo expansion of NOX2(+/+), but not of NOX2(-/-) human monocytic AML cells. We propose that NOX2 may be a conceivable target in the treatment of monocytic AML.
  •  
22.
  • Lunavat, Taral R, et al. (författare)
  • RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer
  • 2016
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612. ; 102, s. 231-238
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm.
  •  
23.
  •  
24.
  • Muralidharan, Somsundar Veppil, et al. (författare)
  • BET bromodomain inhibitors synergize with ATR inhibitors in melanoma in melanoma.
  • 2017
  • Ingår i: Cell Death & Disease. - 2041-4889. ; 8:8, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective in melanoma.
  •  
25.
  • Muralidharan, Somsundar Veppil, et al. (författare)
  • BET bromodomain inhibitors synergize with ATR inhibitors to induce DNA damage, apoptosis, senescence-associated secretory pathway and ER stress in Myc-induced lymphoma cells.
  • 2016
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 35, s. 4689-4697
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibiting the bromodomain and extra-terminal (BET) domain family of epigenetic reader proteins has been shown to have potent anti-tumoral activity, which is commonly attributed to suppression of transcription. In this study, we show that two structurally distinct BET inhibitors (BETi) interfere with replication and cell cycle progression of murine Myc-induced lymphoma cells at sub-lethal concentrations when the transcriptome remains largely unaltered. This inhibition of replication coincides with a DNA-damage response and enhanced sensitivity to inhibitors of the upstream replication stress sensor ATR in vitro and in mouse models of B-cell lymphoma. Mechanistically, ATR and BETi combination therapy cause robust transcriptional changes of genes involved in cell death, senescence-associated secretory pathway, NFkB signaling and ER stress. Our data reveal that BETi can potentiate the cell stress and death caused by ATR inhibitors. This suggests that ATRi can be used in combination therapies of lymphomas without the use of genotoxic drugs.Oncogene advance online publication, 25 January 2016; doi:10.1038/onc.2015.521.
  •  
26.
  • Muralidharan, Somsundar Veppil, et al. (författare)
  • Small molecule inhibitors and a kinase-dead expressing mouse model demonstrate that the kinase activity of Chk1 is essential for mouse embryos and cancer cells
  • 2020
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chk1 kinase is downstream of the ATR kinase in the sensing of improper replication. Previous cell culture studies have demonstrated that Chk1 is essential for replication. Indeed, Chk1 inhibitors are efficacious against tumors with high-level replication stress such as Myc-induced lymphoma cells. Treatment with Chk1 inhibitors also combines well with certain chemotherapeutic drugs, and effects associate with the induction of DNA damage and reduction of Chk1 protein levels. Most studies of Chk1 function have relied on the use of inhibitors. Whether or not a mouse or cancer cells could survive if a kinase-dead form of Chk1 is expressed has not been investigated before. Here, we generate a mouse model that expresses a kinase-dead (D130A) allele in the mouse germ line. We find that this mouse is overtly normal and does not have problems with erythropoiesis with aging as previously been shown for a mouse expressing one null allele. However, similar to a null allele, homozygous kinase-dead mice cannot be generated, and timed pregnancies of heterozygous mice suggest lethality of homozygous blastocysts at around the time of implantation. By breeding the kinase-dead Chk1 mouse with a conditional allele, we are able to demonstrate that expression of only one kinase-dead allele, but no wild-type allele, of Chek1 is lethal for Myc-induced cancer cells. Finally, treatment of melanoma cells with tumor-infiltrating T cells or CAR-T cells is effective even if Chk1 is inhibited, suggesting that Chk1 inhibitors can be safely administered in patients where immunotherapy is an essential component of the arsenal against cancer.
  •  
27.
  • Nilsson, Lisa M, 1976, et al. (författare)
  • Cancer Differentiating Agent Hexamethylene Bisacetamide Inhibits BET Bromodomain Proteins
  • 2016
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 76:8, s. 2376-2383
  • Tidskriftsartikel (refereegranskat)abstract
    • Agents that trigger cell differentiation are highly efficacious in treating certain cancers, but such approaches are not generally effective in most malignancies. Compounds such as DMSO and hexamethylene bisacetamide (HMBA) have been used to induce differentiation in experimental systems, but their mechanisms of action and potential range of uses on that basis have not been developed. Here, we show that HMBA, a compound first tested in the oncology clinic over 25 years ago, acts as a selective bromodomain inhibitor. Biochemical and structural studies revealed an affinity of HMBA for the second bromodomain of BET proteins. Accordingly, both HMBA and the prototype BET inhibitor JQ1 induced differentiation of mouse erythroleukemia cells. As expected of a BET inhibitor, HMBA displaced BET proteins from chromatin, caused massive transcriptional changes, and triggered cell-cycle arrest and apoptosis in Myc-induced B-cell lymphoma cells. Furthermore, HMBA exerted anticancer effects in vivo in mouse models of Myc-driven B-cell lymphoma. This study illuminates the function of an early anticancer agent and suggests an intersection with ongoing clinical trials of BET inhibitor, with several implications for predicting patient selection and response rates to this therapy and starting points for generating BD2-selective BET inhibitors. (C) 2016 AACR.
  •  
28.
  • Nilsson, Lisa M, 1976, et al. (författare)
  • Genetics and Therapeutic Responses to Tumor-Infiltrating Lymphocyte Therapy of Pancreatic Cancer Patient-Derived Xenograft Models
  • 2022
  • Ingår i: Gastro Hep Advances. - : Elsevier BV. - 2772-5723. ; 1:6, s. 1037-1048
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide. Checkpoint immunotherapy has not yet shown encouraging results in pancreatic cancer possibly because of a poor immunogenicity and/or an immune suppressive microenvironment. The aim of this study was to develop patient-derived xenograft (PDX) models, compare their genetics to the original biopsies, and assess if autologous tumor-infiltrating lymphocytes (TILs) would have antitumoral activity in pancreatic cancer. Methods We subcutaneously transplanted tumors from 29 patients into NOG mice to generate PDX models. We established TIL cultures and injected them into PDX mice. We analyzed histology and genetics of biopsies and PDX tumors. Results Tumor growths were confirmed in 11 of 29 transplantations. The PDX tumors histologically resembled their original biopsies, but because stromal cells in the PDX model tumors were from mouse, their gene expression differed from the original biopsies. Immune checkpoint ligands other than programmed death ligand-1 (PD-L1) were expressed in pancreatic cancers, but PD-L1 was rarely expressed. When it was expressed, it correlated with tumor take in PDX models. One of the 3 tumors that expressed PD-L1 was an adenosquamous cancer, and another had a mismatch repair deficiency. TILs were expanded from 6 tumors and were injected into NOG or human interleukin-2 transgenic-NOG mice carrying PDX tumors. Regression of tumors could be verified in human interleukin-2 transgenic-NOG mice in 3 of the 6 PDX models treated with autologous TILs, including the adenosquamous PDX model. Conclusion PDX models of pancreatic cancer can be used to learn more about tumor characteristics and biomarkers and to evaluate responses to adoptive cell therapy and combination therapies. The major benefit of the model is that modifications of T cells can be tested in an autologous humanized mouse model to gain preclinical data to support the initiation of a clinical trial.
  •  
29.
  • Nilsson, Lisa M, 1976, et al. (författare)
  • Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • c-Myc (hereafter called Myc) belongs to a family of transcription factors that regulates cell growth, cell proliferation, and differentiation. Myc initiates the transcription of a large cast of genes involved in cell growth by stimulating metabolism and protein synthesis. Some of these, like those involved in glycolysis, may be part of the Warburg effect, which is defined as increased glucose uptake and lactate production in the presence of adequate oxygen supply. In this study, we have taken a mouse-genetics approach to challenge the role of select Myc-regulated metabolic enzymes in tumorigenesis in vivo. By breeding λ-Myc transgenic mice, Apc(Min) mice, and p53 knockout mice with mouse models carrying inactivating alleles of Lactate dehydrogenase A (Ldha), 3-Phosphoglycerate dehydrogenase (Phgdh) and Serine hydroxymethyltransferase 1 (Shmt1), we obtained offspring that were monitored for tumor development. Very surprisingly, we found that these genes are dispensable for tumorigenesis in these genetic settings. However, experiments in fibroblasts and colon carcinoma cells expressing oncogenic Ras show that these cells are sensitive to Ldha knockdown. Our genetic models reveal cell context dependency and a remarkable ability of tumor cells to adapt to alterations in critical metabolic pathways. Thus, to achieve clinical success, it will be of importance to correctly stratify patients and to find synthetic lethal combinations of inhibitors targeting metabolic enzymes.
  •  
30.
  • Ny, Lars, 1967, et al. (författare)
  • Supporting clinical decision making in advanced melanoma by preclinical testing in personalized immune-humanized xenograft mouse models
  • 2020
  • Ingår i: Annals of Oncology. - : Elsevier BV. - 0923-7534. ; 31:2, s. 266-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The mouse strains usually used to generate patient-derived xenografts (PDXs) are immunocompromised, rendering them unsuitable for immunotherapy studies. Here we assessed the value of immune-PDX mouse models for predicting responses to anti-PD-1 checkpoint inhibitor therapy in patients. Patients and methods: Melanoma biopsies contained in a retrospective biobank were transplanted into NOG mice or NOG mice expressing interleukin 2 (hIL2-NOG mice). Tumor growth was monitored, and comparisons were made with clinical data, sequencing data, and current in silico predictive tools. Results: Biopsies grew readily in NOG mice but growth was heterogeneous in hIL2-NOG mice. IL2 appears to activate T-cell immunity in the biopsies to block tumor growth. Biopsy growth in hIL2-NOG mice was negatively associated with survival in patients previously treated with PD-1 checkpoint blockade. In two cases, the prospective clinical decisions of anti-PD-1 therapy or targeted BRAF/MEK inhibitors were supported by the observed responses in mice. Conclusions: Immune-PDX models represent a promising addition to future biomarker discovery studies and for clinical decision making in patients receiving immunotherapy.
  •  
31.
  • Ny, Lars, 1967, et al. (författare)
  • The PEMDAC phase 2 study of pembrolizumab and entinostat in patients with metastatic uveal melanoma
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors report the results of the phase II PEMDAC clinical study testing the combination of the HDAC inhibitor entinostat with the anti- PD-1 antibody pembrolizumab in uveal melanoma. Low tumor burden, a wildtype BAP1 gene in the tumor or iris melanoma correlates with response and longer survival. Preclinical studies have suggested that epigenetic therapy could enhance immunogenicity of cancer cells. We report the results of the PEMDAC phase 2 clinical trial (n = 29; NCT02697630) where the HDAC inhibitor entinostat was combined with the PD-1 inhibitor pembrolizumab in patients with metastatic uveal melanoma (UM). The primary endpoint was objective response rate (ORR), and was met with an ORR of 14%. The clinical benefit rate at 18 weeks was 28%, median progression free survival was 2.1 months and the median overall survival was 13.4 months. Toxicities were manageable, and there were no treatment-related deaths. Objective responses and/or prolonged survival were seen in patients with BAP1 wildtype tumors, and in one patient with an iris melanoma that exhibited a UV signature. Longer survival also correlated with low baseline ctDNA levels or LDH. In conclusion, HDAC inhibition and anti-PD1 immunotherapy results in durable responses in a subset of patients with metastatic UM.
  •  
32.
  • Olofsson Bagge, Roger, 1978, et al. (författare)
  • Isolated Hepatic Perfusion With Melphalan for Patients With Isolated Uveal Melanoma Liver Metastases: A Multicenter, Randomized, Open-Label, Phase III Trial (the SCANDIUM Trial)
  • 2023
  • Ingår i: Journal of Clinical Oncology. - : American Society of Clinical Oncology (ASCO). - 0732-183X .- 1527-7755. ; 41:16, s. 3042-50
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSEAbout half of patients with metastatic uveal melanoma present with isolated liver metastasis, in whom the median survival is 6-12 months. The few systemic treatment options available only moderately prolong survival. Isolated hepatic perfusion (IHP) with melphalan is a regional treatment option, but prospective efficacy and safety data are lacking.METHODSIn this multicenter, randomized, open-label, phase III trial, patients with previously untreated isolated liver metastases from uveal melanoma were randomly assigned to receive a one-time treatment with IHP with melphalan or best alternative care (control group). The primary end point was overall survival at 24 months. Here, we report the secondary outcomes of response according to RECIST 1.1 criteria, progression-free survival (PFS), hepatic PFS (hPFS), and safety.RESULTSNinety-three patients were randomly assigned, and 87 patients were assigned to either IHP (n = 43) or a control group receiving the investigator's choice of treatment (n = 44). In the control group, 49% received chemotherapy, 39% immune checkpoint inhibitors, and 9% locoregional treatment other than IHP. In an intention-to-treat analysis, the overall response rates (ORRs) were 40% versus 4.5% in the IHP and control groups, respectively (P < .0001). The median PFS was 7.4 months versus 3.3 months (P < .0001), with a hazard ratio of 0.21 (95% CI, 0.12 to 0.36), and the median hPFS was 9.1 months versus 3.3 months (P < .0001), both favoring the IHP arm. There were 11 treatment-related serious adverse events in the IHP group compared with seven in the control group. There was one treatment-related death in the IHP group.CONCLUSIONIHP treatment resulted in superior ORR, hPFS, and PFS compared with best alternative care in previously untreated patients with isolated liver metastases from primary uveal melanoma.
  •  
33.
  • Pandita, Ankur, et al. (författare)
  • Intussusceptive angiogenesis in human metastatic malignant melanoma. : Intussusception in human melanoma
  • 2021
  • Ingår i: The American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 191:11, s. 2023-2038
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. The limited effect may be explained by an additional, less vascular endothelial growth factor-driven, form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered BRAF-induced, PTEN-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cell infiltration were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, invitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation invitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.
  •  
34.
  •  
35.
  • Sah, Vasu R., et al. (författare)
  • Epigenetic therapy to enhance therapeutic effects of PD-1 inhibition in therapy-resistant melanoma
  • 2022
  • Ingår i: Melanoma Research. - : Ovid Technologies (Wolters Kluwer Health). - 0960-8931. ; 32:4, s. 241-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeted therapy and immunotherapy have revolutionized the treatment of metastatic skin melanoma but around half of all patients develop resistance early or late during treatment. The situation is even worse for patients with metastatic uveal melanoma (UM). Here we hypothesized that the immunotherapy of therapy-resistant skin melanoma or UM can be enhanced by epigenetic inhibitors. Cultured B16F10 cells and human UM cells were treated with the histone deacetylase inhibitor (HDACi) entinostat or BETi JQ1. Entinostat-induced HLA expression and PD-L1, but JQ1 did not. A syngeneic mouse model carrying B16-F10 melanoma cells was treated with PD-1 and CTLA4 inhibitors, which was curative. Co-treatment with the bioavailable BETi iBET726 impaired the immunotherapy effect. Monotherapy of a B16-F10 mouse model with anti-PD-1 resulted in a moderate therapeutic effect that could be enhanced by entinostat. Mice carrying PD-L1 knockout B16-F10 cells were also sensitive to entinostat. This suggests HDAC inhibition and immunotherapy could work in concert. Indeed, co-cultures of UM with HLA-matched melanoma-specific tumor-infiltrating lymphocytes (TILs) resulted in higher TIL-mediated melanoma killing when entinostat was added. Further exploration of combined immunotherapy and epigenetic therapy in metastatic melanoma resistant to PD-1 inhibition is warranted.
  •  
36.
  • Stokowska, Anna, et al. (författare)
  • Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia.
  • 2017
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 140:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury.media-1vid110.1093/brain/aww314_video_abstractaww314_video_abstract.
  •  
37.
  •  
38.
  • Xue, Y. H., et al. (författare)
  • An approach to suppress the evolution of resistance in BRAF(V600E)-mutant cancer
  • 2017
  • Ingår i: Nat Med. - : Springer Science and Business Media LLC. - 1078-8956. ; 23:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The principles that govern the evolution of tumors exposed to targeted therapy are poorly understood. Here we modeled the selection and propagation of an amplification in the BRAF oncogene (BRAF(amp)) in patient-derived tumor xenografts (PDXs) that were treated with a direct inhibitor of the kinase ERK, either alone or in combination with other ERK signaling inhibitors. Single-cell sequencing and multiplex fluorescence in situ hybridization analyses mapped the emergence of extra-chromosomal amplification in parallel evolutionary trajectories that arose in the same tumor shortly after treatment. The evolutionary selection of BRAF(amp) was determined by the fitness threshold, the barrier that subclonal populations need to overcome to regain fitness in the presence of therapy. This differed for inhibitors of ERK signaling, suggesting that sequential monotherapy is ineffective and selects for a progressively higher BRAF copy number. Concurrent targeting of the RAF, MEK and ERK kinases, however, imposed a sufficiently high fitness threshold to prevent the propagation of subclones with high-level BRAF(amp). When administered on an intermittent schedule, this treatment inhibited tumor growth in 11/11 PDXs of lung cancer or melanoma without apparent toxicity in mice. Thus, gene amplification can be acquired and expanded through parallel evolution, enabling tumors to adapt while maintaining their intratumoral heterogeneity. Treatments that impose the highest fitness threshold will likely prevent the evolution of resistance-causing alterations and, thus, merit testing in patients.
  •  
39.
  • Andersson, Mattias K, 1979, et al. (författare)
  • Clinical, genetic and experimental studies of the Brooke-Spiegler (CYLD) skin tumor syndrome
  • 2019
  • Ingår i: Journal of Plastic Surgery and Hand Surgery. - : Medical Journals Sweden AB. - 2000-656X .- 2000-6764. ; 53:2, s. 71-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Brooke-Spiegler syndrome (BSS; a.k.a. tuban tumor syndrome) is an autosomal dominant inherited skin disorder caused by germline mutations in the CYLD tumor suppressor gene. BSS is characterized by multiple skin adnexal tumors, mainly cylindromas and spiradenomas on the head and neck. The tumors are often severely disfiguring and require repeated surgical interventions. Here, we describe a four-generation BSS-family with a novel germline c.1613_1614delGC CYLD mutation that introduces a premature STOP codon predicted to result in a truncated, inactivated CYLD protein. In addition, we present a pilot study describing establishment of the first patient-derived xenografts (PDXs) from cutaneous CYLD-defective cylindromas. Fresh tumor tissues from cylindromas were transplanted into immunocompromised mice to generate PDXs. One xenograft showed progressive tumor growth after 3 months whereas the others remained unchanged in size during the 6 months study period. Histopathological and immunohistochemical analyses of the PDXs revealed that they recapitulate the histological and molecular features of their respective primary tumors, including expression of NTRK3 and the oncogenic driver MYB. In summary, we present the first preclinical BSS-model that morphologically and genetically recapitulates human CYLD-defective cylindromas. This model will be useful for preclinical therapeutic drug testing and for further studies of the molecular pathogenesis of inherited cylindromas.
  •  
40.
  • Belgrano, Valerio, et al. (författare)
  • BRAF status as a predictive factor for response in isolated limb perfusion.
  • 2019
  • Ingår i: International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. - : Informa UK Limited. - 1464-5157. ; 36:1, s. 511-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated limb perfusion (ILP) is a treatment option for unresectable in-transit melanoma metastases of the extremities. Approximately two-thirds of the patients have a complete response, and known predictive factors mainly regard tumor burden. In an attempt to identify subgroups with higher response rates, we retrospectively analyzed the predictive value of the BRAF V600E/K mutation for response at our institution.Between January 2012 and December 2017, 98 consecutive patients underwent first-time ILP with melphalan for melanoma in-transit metastases and were included in the study. Data was retrieved from our prospectively kept database. Tumor burden was assessed preoperatively as number of lesions and largest tumor diameter. BRAF status was determined according to clinical routine. Response rates were classified according to WHO criteria.Of the 98 patients included in the analysis, 32 patients had a BRAF V600E/K mutation (33%) and 66 patients were BRAF wild type (wt). There was no difference in age, sex or tumor burden between the groups. Comparing response between BRAF V600E/K mutation and BRAF wt, the overall response rate was 69% vs. 77% (p=.36) and the complete response rate was 47% vs. 52% (p=.67). There was no difference in survival, with a median survival of 47 months.In this consecutive series of patients, BRAF V600E/K mutation was not found to be a significant factor for response or survival following ILP.
  •  
41.
  • Belgrano, Valerio, et al. (författare)
  • Response and Toxicity of Repeated Isolated Limb Perfusion (re-ILP) for Patients With In-Transit Metastases of Malignant Melanoma.
  • 2019
  • Ingår i: Annals of surgical oncology. - : Springer Science and Business Media LLC. - 1534-4681 .- 1068-9265. ; 26:4, s. 1055-1062
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated limb perfusion (ILP) is a safe and well-established treatment for in-transit metastases of melanoma. In case of relapse or disease progression, ILP can be repeated (re-ILP). This study aimed retrospectively to analyze a large consecutive series of re-ILP and compare clinical outcomes with first-time ILP.Between 2001 and 2015, 290 consecutive patients underwent 380 ILPs. Of these, 90 were re-ILPs including 68second ILPs, 16 third ILPs, 4 fourth ILPs, and two fifth ILPs. The study evaluated response (using World Health Organization [WHO] criteria), local toxicity (using the Wieberdink scale), and complications (using Clavien-Dindo).The results were compared between the first ILP, the second ILP, and the third to fifth ILP. The overall response rate was respectively 83%, 80% and 68%, with a complete response (CR) rate of 60%, 41%, and 59%. In the re-ILP group, the patients with a CR after the first ILP had a 65% CR rate after the second ILP compared with 8% for the patients without a CR (p=0.001). The risk for local toxicity or complications was not increased after re-ILP. The median overall survival periods were respectively 34, 41, and 93months (p=0.02).As a therapeutic option, ILP can be repeated safely for in-transit metastases of melanoma, achieving similar high response rates without increasing complications or toxicity. Re-ILP is mainly indicated for patients who already had a CR after the first ILP, whereas other treatment options should be considered for primary non-responders.
  •  
42.
  •  
43.
  • Bhadury, Joydeep, et al. (författare)
  • Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors.
  •  
44.
  • Blomberg, Jeanette, 1977-, et al. (författare)
  • Reduced FAS transcription in clones of U937 cells that have acquired resistance to Fas-induced apoptosis
  • 2009
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:2, s. 497-508
  • Tidskriftsartikel (refereegranskat)abstract
    • Susceptibility to cell death is a prerequisite for the elimination of tumour cells by cytotoxic immune cells, chemotherapy or irradiation. Activation of the death receptor Fas is critical for the regulation of immune cell homeostasis and efficient killing of tumour cells by apoptosis. To define the molecular changes that occur during selection for insensitivity to Fas-induced apoptosis, a resistant variant of the U937 cell line was established. Individual resistant clones were isolated and characterized. The most frequently observed defect in the resistant cells was reduced Fas expression, which correlated with decreased FAS transcription. Clones with such reduced Fas expression also displayed partial cross-resistance to tumour necrosis factor-alpha stimulation, but the mRNA expression of tumour necrosis factor receptors was not decreased. Reintroduction of Fas conferred susceptibility to Fas but not to tumour necrosis factor-alpha stimulation, suggesting that several alterations could be present in the clones. The reduced Fas expression could not be explained by mutations in the FAS coding sequence or promoter region, or by silencing through methylations. Protein kinase B and extracellular signal-regulated kinase, components of signalling pathways downstream of Ras, were shown to be activated in some of the resistant clones, but none of the three RAS genes was mutated, and experiments using chemical inhibitors could not establish that the activation of these proteins was the cause of Fas resistance as described in other systems. Taken together, the data illustrate that Fas resistance can be caused by reduced Fas expression, which is a result of an unidentified mode of regulation.
  •  
45.
  • Choong, Oi Kuan, 1985, et al. (författare)
  • SARS-CoV-2 replicates and displays oncolytic properties in clear cell and papillary renal cell carcinoma
  • 2023
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 virus is currently causing a global pandemic. Infection may result in a systemic disease called COVID-19, affecting primarily the respiratory tract. Often the gastrointestinal tract and kidneys also become involved. Angiotensin converting enzyme 2 (ACE2) serves as the receptor for SARS-CoV-2. The membrane proteins, Transmembrane serine protease 2 (TMPRSS2) and Neuropilin 1 (NRP1) are accessory proteins facilitating the virus entry. In this study we show that the human proximal kidney tubules, express these factors. We hypothesized that cancers derived from proximal tubules as clear cell (CCRCC) and papillary renal cell carcinoma (PRCC), retain the expression of the SARS-CoV-2 entry factors making these cancers susceptible to SARS-CoV-2 infection. We used bioinformatics, western blotting, and assessment of tissue micro arrays (TMA) including 263 cases of CCRCC, 139 cases of PRCC and 18 cases of chromophobe RCC to demonstrate that the majority of CCRCC and PRCC cases retained the RNA and protein expression of the entry factors for SARS-CoV-2. We furthermore show that SARS-CoV-2 virus propagated robustly in primary cultures of CCRCC and PRCC cells with a visible virus cytopathogenic effect correlating with viral RNA expression levels. We also noted that the delta-variant of SARS-CoV-2 causes cancer cells to form syncytia in-vitro. This phenomenon was also identified histologically in CCRCC tissue from a patient that had been hospitalized for COVID-19, twelve months prior to nephrectomy. Our data provide insights into SARS-CoV-2 infectivity in renal cell carcinoma and that the virus causes a distinct cytopathogenic effect.
  •  
46.
  •  
47.
  •  
48.
  • Fredriksson, Nils Johan, 1979-, et al. (författare)
  • Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:12, s. 1258-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic mutations in noncoding sequences are poorly explored in cancer, a rare exception being the recent identification of activating mutations in TERT regulatory DNA. Although this finding is suggestive of a general mechanism for oncogene activation, this hypothesis remains untested. Here we map somatic mutations in 505 tumor genomes across 14 cancer types and systematically screen for associations between mutations in regulatory regions and RNA-level changes. We identify recurrent promoter mutations in several genes but find that TERT mutations are exceptional in showing a strong and genome-wide significant association with increased expression. Detailed analysis of TERT across cancers shows that the strength of this association is highly variable and is strongest in copy number stable cancers such as thyroid carcinoma. We additionally propose that TERT promoter mutations control expression of the nearby gene CLPTM1L. Our analysis provides a detailed pan-cancer view of TERT transcriptional activation but finds no clear evidence for frequent oncogenic promoter mutations beyond TERT.
  •  
49.
  • Huang, Junchi, et al. (författare)
  • MYB alternative promoter activity is increased in adenoid cystic carcinoma metastases and is associated with a specific gene expression signature
  • 2024
  • Ingår i: ORAL ONCOLOGY. - 1368-8375 .- 1879-0593. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Adenoid cystic carcinoma (ACC) is a head and neck cancer with a poor long-term prognosis that shows frequent local recurrences and distant metastases. The tumors are characterized by MYB oncogene activation and are notoriously unresponsive to systemic therapies. The biological underpinnings behind therapy resistance of disseminated ACC are largely unknown. Here, we have studied the molecular and clinical significance of MYB alternative promoter (TSS2) usage in ACC metastases. Materials and methods: MYB TSS2 activity was investigated in primary tumors and metastases from 26 ACC patients using RNA-sequencing and quantitative real-time PCR analysis. Differences in global gene expression between MYB TSS2 high and low cases were studied, and pathway analyses were performed. Results: MYB TSS2 activity was significantly higher in ACC metastases than in primary tumors (median activity 15.1 vs 3.0, P = 0.0003). MYB TSS2 high ACC metastases showed a specific gene expression signature, including increased expression of multi-drug resistance genes and canonical MYB target genes, and suppression of the p53 and NOTCH pathways. Conclusions: Collectively, our findings indicate that elevated MYB TSS2 activity is associated with metastases, potential drug resistance, and augmented MYB-driven gene expression in ACC. Our study advocates the need for new therapies that specifically target MYB and drug resistance mechanisms in disseminated ACC.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 66
Typ av publikation
tidskriftsartikel (63)
annan publikation (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (60)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Nilsson, Jonas A, 19 ... (63)
Ny, Lars, 1967 (21)
Olofsson Bagge, Roge ... (18)
Karlsson, Joakim (11)
Stierner, Ulrika, 19 ... (10)
Jespersen, Henrik (10)
visa fler...
Bhadury, Joydeep (8)
Lötvall, Jan, 1956 (5)
Lindner, Per, 1956 (5)
Nilsson, Ola, 1957 (4)
Davila Lopez, Marcel ... (4)
Alsén, Samuel (4)
Larsson, Erik, 1975 (4)
Levin, Max, 1969 (4)
Lässer, Cecilia, 198 ... (4)
Jang, Su Chul, 1984 (4)
Belgrano, Valerio (4)
Naredi, Peter, 1955 (3)
Cahlin, Christian, 1 ... (3)
Ståhlberg, Anders, 1 ... (3)
Ljuslinder, Ingrid (3)
All-Eriksson, C (3)
Rizell, Magnus, 1963 (3)
Helgadottir, H (3)
Ullenhag, Gustav (3)
Katsarelias, Dimitri ... (3)
Mattsson, Jan (3)
Keller, U (2)
Carneiro, Ana (2)
Andersson, Mattias K ... (2)
Stenman, Göran, 1953 (2)
Karason, Kristjan, 1 ... (2)
Artursson, Per (2)
Yrlid, Ulf, 1971 (2)
Hansson, Johan (2)
Bergö, Martin, 1970 (2)
Ibrahim, Mohamed X (2)
Sayin, Volkan I., 19 ... (2)
Akyürek, Levent, 196 ... (2)
Helleday, T (2)
Hofving, Tobias, 198 ... (2)
All-Ericsson, Charlo ... (2)
Giglio, Daniel, 1977 (2)
Sternby Eilard, Mali ... (2)
Carstam, Louise (2)
Fagman, Johan Bourgh ... (2)
Larson, Göran, 1953 (2)
Dellgren, Göran, 196 ... (2)
Ljuslinder, I (2)
Lundgren, Lotta (2)
visa färre...
Lärosäte
Göteborgs universitet (61)
Karolinska Institutet (11)
Umeå universitet (8)
Linköpings universitet (6)
Uppsala universitet (4)
Lunds universitet (3)
visa fler...
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (66)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (60)
Naturvetenskap (6)
Teknik (1)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy