SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Lars Ola 1959 ) "

Sökning: WFRF:(Nilsson Lars Ola 1959 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hällfors, Maria, et al. (författare)
  • Translocation of an arctic seashore plant reveals signs of maladaptation to altered climatic conditions
  • 2020
  • Ingår i: PeerJ. - London : PeerJ. - 2167-8359. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ongoing anthropogenic climate change alters the local climatic conditions to which species may be adapted. Information on species’ climatic requirements and their intraspecific variation is necessary for predicting the effects of climate change on biodiversity. We used a climatic gradient to test whether populations of two allopatric varieties of an arctic seashore herb (Primula nutans ssp. finmarchica) show adaptation to their local climates and how a future warmer climate may affect them. Our experimental set-up combined a reciprocal translocation within the distribution range of the species with an experiment testing the performance of the sampled populations in warmer climatic conditions south of their range. We monitored survival, size, and flowering over four growing seasons as measures of performance and, thus, proxies of fitness. We found that both varieties performed better in experimental gardens towards the north. Interestingly, highest up in the north, the southern variety outperformed the northern one. Supported by weather data, this suggests that the climatic optima of both varieties have moved at least partly outside their current range. Further warming would make the current environments of both varieties even less suitable. We conclude that Primula nutans ssp. finmarchica is already suffering from adaptational lag due to climate change, and that further warming may increase this maladaptation, especially for the northern variety. The study also highlights that it is not sufficient to run only reciprocal translocation experiments. Climate change is already shifting the optimum conditions for many species and adaptation needs also to be tested outside the current range of the focal taxon in order to include both historic conditions and future conditions. ©2020 Hällfors et al.
  •  
2.
  • Högberg, Mona N, et al. (författare)
  • Carbon–nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest
  • 2021
  • Ingår i: New Phytologist. - Chichester : Wiley-Blackwell. - 0028-646X .- 1469-8137. ; 232:4, s. 1839-1848
  • Tidskriftsartikel (refereegranskat)abstract
    • The supply of carbon (C) from tree photosynthesis to ectomycorrhizal (ECM) fungi is known to decrease with increasing plant nitrogen (N) supply, but how this affects fungal nutrition and growth remains to be clarified. We placed mesh-bags with quartz sand, with or without an organic N (15N-, 13C-labeled) source, in the soil along a natural N supply gradient in boreal forest, to measure growth and use of N and C by ECM extramatrical mycelia. Mycelial C : N declined with increasing N supply. Addition of N increased mycelial growth at the low-N end of the gradient. We found an inverse relationship between uptake of added N and C; the use of added N was high when ambient N was low, whereas use of added C was high when C from photosynthesis was low. We propose that growth of ECM fungi is N-limited when soil N is scarce and tree belowground C allocation to ECM fungi is high, but is C-limited when N supply is high and tree belowground C allocation is low. This suggests that ECM fungi have a major role in soil N retention in nutrient-poor, but less so in nutrient-rich boreal forests. © 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation
  •  
3.
  • Toor, Salman, et al. (författare)
  • SNIC Science Cloud (SSC): A national-scale cloud infrastructure for Swedish academia
  • 2017
  • Ingår i: Proceedings - 13th IEEE International Conference on eScience, eScience 2017. - Los Alamitos, CA : IEEE Computer Society. ; , s. 219-227, s. 219-227
  • Konferensbidrag (refereegranskat)abstract
    • The cloud computing paradigm have fundamentally changed the way computational resources are being offered. Although the number of large-scale providers in academia is still relatively small, there is a rapidly increasing interest and adoption of cloud Infrastructure-as-a-Service in the scientific community. The added flexibility in how applications can be implemented compared to traditional batch computing systems is one of the key success factors for the paradigm, and scientific cloud computing promises to increase adoption of simulation and data analysis in scientific communities not traditionally users of large scale e-Infrastructure, the so called long tail of science. In 2014, the Swedish National Infrastructure for Computing (SNIC) initiated a project to investigate the cost and constraints of offering cloud infrastructure for Swedish academia. The aim was to build a platform where academics could evaluate cloud computing for their use-cases. SNIC Science Cloud (SSC) has since then evolved into a national-scale cloud infrastructure based on three geographically distributed regions. In this article we present the SSC vision, architectural details and user stories. We summarize the experiences gained from running a nationalscale cloud facility into ten simple rules for starting up a science cloud project based on OpenStack. We also highlight some key areas that require careful attention in order to offer cloud infrastructure for ubiquitous academic needs and in particular scientific workloads.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy