SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson R. Henrik 1976) "

Sökning: WFRF:(Nilsson R. Henrik 1976)

  • Resultat 1-50 av 180
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
17.
  • Polme, S., et al. (författare)
  • FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles
  • 2020
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 105:1, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.
  •  
18.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
19.
  • Tedersoo, L., et al. (författare)
  • The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
  • 2021
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 111, s. 573-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
  •  
20.
  • He, M. Q., et al. (författare)
  • Notes, outline and divergence times of Basidiomycota
  • 2019
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 99, s. 105-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya, classes are 211-383 Mya, and orders are 99-323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27-178 Mya, Pucciniomycotina from 85-222 Mya, and Ustilaginomycotina from 79-177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of theirphylogeny and evolution.
  •  
21.
  • Kõljalg, Urmas, et al. (författare)
  • UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi
  • 2005
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 166:3, s. 1063-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always complete or trustworthy. In order to overcome this deficiency, we report on UNITE, an open-access database. UNITE comprises well annotated fungal ITS sequences from well defined herbarium specimens that include full herbarium reference identification data, collector/source and ecological data. At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. UNITE can be searched by taxon name, via sequence similarity using BLAST n, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a BLAST search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. The UNITE database is accessible through the URLhttp://unite.zbi.ee.
  •  
22.
  • Lucking, R., et al. (författare)
  • Fungal taxonomy and sequence-based nomenclature
  • 2021
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 6:5, s. 540-548
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification and proper naming of microfungi, in particular plant, animal and human pathogens, remains challenging. Molecular identification is becoming the default approach for many fungal groups, and environmental metabarcoding is contributing an increasing amount of sequence data documenting fungal diversity on a global scale. This includes lineages represented only by sequence data. At present, these taxa cannot be formally described under the current nomenclature rules. By considering approaches used in bacterial taxonomy, we propose solutions for the nomenclature of taxa known only from sequences to facilitate consistent reporting and communication in the literature and public sequence repositories. This Perspective discusses fungal taxonomy and provides guidance for the naming of fungal taxa known only from sequences.
  •  
23.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Taxonomic annotation of public fungal ITS sequences from the built environment - a report from an April 10-11, 2017 workshop (Aberdeen, UK)
  • 2018
  • Ingår i: Mycokeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; :28, s. 65-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi - whether transient visitors or more persistent residents - may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxonomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions - such as country and host/substrate of collection - are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10-11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS bar-code sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes - including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences - were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment.
  •  
24.
  • Schoch, CL, et al. (författare)
  • Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:16, s. 6241-6246
  • Tidskriftsartikel (refereegranskat)abstract
    • Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
  •  
25.
  • Abarenkov, Kessy, et al. (författare)
  • Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden)
  • 2016
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 16, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent molecular studies have identified substantial fungal diversity in indoor environments. Fungi and fungal particles have been linked to a range of potentially unwanted effects in the built environment, including asthma, decay of building materials, and food spoilage. The study of the built mycobiome is hampered by a number of constraints, one of which is the poor state of the metadata annotation of fungal DNA sequences from the built environment in public databases. In order to enable precise interrogation of such data – for example, “retrieve all fungal sequences recovered from bathrooms” – a workshop was organized at the University of Gothenburg (May 23-24, 2016) to annotate public fungal barcode (ITS) sequences according to the MIxS-Built Environment annotation standard (http://gensc.org/mixs/). The 36 participants assembled a total of 45,488 data points from the published literature, including the addition of 8,430 instances of countries of collection from a total of 83 countries, 5,801 instances of building types, and 3,876 instances of surface-air contaminants. The results were implemented in the UNITE database for molecular identification of fungi (http://unite.ut.ee) and were shared with other online resources. Data obtained from human/animal pathogenic fungi will furthermore be verified on culture based metadata for subsequent inclusion in the ISHAM-ITS database (http://its.mycologylab.org).
  •  
26.
  • Abrego, Nerea, et al. (författare)
  • Airborne DNA reveals predictable spatial and seasonal dynamics of fungi
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 631, s. 835-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5.
  •  
27.
  • Bidartondo, Martin, et al. (författare)
  • Preserving accuracy in GenBank
  • 2008
  • Ingår i: Science. ; 319:5870
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
28.
  • Hallenberg, Nils, 1947, et al. (författare)
  • Pseudolagarobasidium (Basidiomycota): on the reinstatement of a genus of parasitic, saprophytic, and endophytic resupinate fungi
  • 2008
  • Ingår i: Botany. - 1916-2804. ; 86:11, s. 1319-1325
  • Tidskriftsartikel (refereegranskat)abstract
    • The small resupinate genus Pseudolagarobasidium (Polyporales, Basidiomycota) presently comprises less than five species, all of which were described from tropical to subtropical regions, and two of which are root parasites on leguminous trees. The genus has recently been synonymized with Radulodon on morphological grounds, and the present study evaluates this proposal in a molecular context. Pseudolagarobasidium was found to constitute a well supported, monophyletic group excluding Radulodon and this synonymy is rejected. The ecological range of the genus spans saprotrophy to parasitism, and this study presents evidence that at least one lineage in Pseudolagarobasidium is endophytic in the cacao tree (Theobroma cacao L.). Key words: Polyporales, Radulodon, phylogeny, plant interactions. Résumé: Le Pseudolagarobasidium (Polyporales, Basidiomycota) constitue un genre de petits champignons résupinés qui comporte actuellement cinq espèces, toutes décrites à partir de régions tropicales ou subtropicales, incluant deux espèces parasites des racines d'arbres de la famille des légumineuses. On en a récemment établi la synonymie avec le genre Radulodon sur la base morphologique, mais les auteurs utilisent ici l'approche moléculaire. On constate que le genre Pseudolagarobasidium constitue un groupe monophylétique robuste excluant les Radulodon ce qui conduit au rejet de cette synonymie. L'amplitude écologique du genre va du saprophytisme au parasitisme, et on présente des preuves qu'au moins une lignée est un endophyte du cacaoyer (Theobroma cacao L.). Mots-clés : Polyporales, Radulon, phylogénie, interactions végétales.
  •  
29.
  • Hibbett, David S., et al. (författare)
  • Agaricomycetes
  • 2014
  • Ingår i: The Mycota. - Berlin : Springer. - 9783642553172 ; , s. 373-429
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Agaricomycetes includes ca. 21,000 described species of mushroom-forming fungi that function as decayers, pathogens, and mutualists in both terrestrial and aquatic habitats. The morphological diversity of Agaricomycete fruiting bodies is unparalleled in any other group of fungi, ranging from simple corticioid forms to complex, developmentally integrated forms (e.g., stinkhorns). In recent years, understanding of the phylogenetic relationships and biodiversity of Agaricomycetes has advanced dramatically, through a combination of polymerase chain reaction-based multilocus phylogenetics, phylogenomics, and molecular environmental surveys. Agaricomycetes is strongly supported as a clade and includes several groups formerly regarded as Heterobasidiomycetes, namely the Auriculariales, Sebacinales, and certain Cantharellales (Tulasnellaceae and Ceratobasidiaceae). The Agaricomycetes can be divided into 20 mutually exclusive clades that have been treated as orders. This chapter presents an overview of the phylogenetic diversity of Agaricomycetes, emphasizing recent molecular phylogenetic studies.
  •  
30.
  • Hibbett, David, et al. (författare)
  • Sequence-based classification and identification of Fungi
  • 2016
  • Ingår i: Mycologia. - 0027-5514. ; 108:6, s. 1049-1068
  • Forskningsöversikt (refereegranskat)abstract
    • Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable valid publication of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.
  •  
31.
  • Hyde, Kevin D., et al. (författare)
  • One stop shop: backbones trees for important phytopathogenic genera: I (2014)
  • 2014
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 21-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
  •  
32.
  • Kõljalg, U., et al. (författare)
  • The taxon hypothesis paradigm—On the unambiguous detection and communication of taxa
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the taxon hypothesis (TH) paradigm, which covers the construction, identification, and communication of taxa as datasets. Defining taxa as datasets of individuals and their traits will make taxon identification and most importantly communication of taxa precise and reproducible. This will allow datasets with standardized and atomized traits to be used digitally in identification pipelines and communicated through persistent identifiers. Such datasets are particularly useful in the context of formally undescribed or even physically undiscovered species if data such as sequences from samples of environmental DNA (eDNA) are available. Implementing the TH paradigm will to some extent remove the impediment to hastily discover and formally describe all extant species in that the TH paradigm allows discovery and communication of new species and other taxa also in the absence of formal descriptions. The TH datasets can be connected to a taxonomic backbone providing access to the vast information associated with the tree of life. In parallel to the description of the TH paradigm, we demonstrate how it is implemented in the UNITE digital taxon communication system. UNITE TH datasets include rich data on individuals and their rDNA ITS sequences. These datasets are equipped with digital object identifiers (DOI) that serve to fix their identity in our communication. All datasets are also connected to a GBIF taxonomic backbone. Researchers processing their eDNA samples using UNITE datasets will, thus, be able to publish their findings as taxon occurrences in the GBIF data portal. UNITE species hypothesis (species level THs) datasets are increasingly utilized in taxon identification pipelines and even formally undescribed species can be identified and communicated by using UNITE. The TH paradigm seeks to achieve unambiguous, unique, and traceable communication of taxa and their properties at any level of the tree of life. It offers a rapid way to discover and communicate undescribed species in identification pipelines and data portals before they are lost to the sixth mass extinction. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
33.
  • Moncalvo, J. M., et al. (författare)
  • The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods
  • 2006
  • Ingår i: Mycologia. - : Informa UK Limited. - 0027-5514 .- 1557-2536. ; 98:6, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • We reassessed the circumscription of the cantharelloid clade and identified monophyletic groups by using nLSU, nSSU, mtSSU and RPB2 sequence data. Results agreed with earlier studies that placed the genera Cantharellus, Craterellus, Hydnum, Clavulina, Membranomyces, Multiclavula, Sistotrema, Botryobasidium and the family Ceratobasidiaceae in that clade. Phylogenetic analyses support monophyly of all genera except Sistotrema, which was highly polyphyletic. Strongly supported monophyletic groups were: (i) Cantharellus-Craterellus, Hydnum, and the Sistotrema confluens group; (ii) Clavulina-Membranomyces and the S. brinkmannii-oblongisporum group, with Multiclavula being possibly sister of that clade; (iii) the Sistotrema eximum-octosporum group; (iv) Sistotrema adnatum and S. coronilla. Positions of Sistotrema raduloides and S. athelioides were unresolved, as were basal relationships. Botryobasidium was well supported as the sister taxon of all the above taxa, while Ceratobasidiaceae was the most basal lineage. The relationship between Tulasnella and members of the cantharelloid clade will require further scrutiny, although there is cumulative evidence that they are probably sister groups. The rates of molecular evolution of both the large and small nuclear ribosomal RNA genes (nuc-rDNA) are much higher in Cantharellus, Craterellus and Tulasnella than in the other cantharelloid taxa, and analyses of nuc-rDNA sequences strongly placed Tulasnella close to Cantharellus-Craterellus. In contrast analyses with RPB2 and mtSSU sequences placed Tulasnella at the base of the cantharelloid clade. Our attempt to reconstruct a "supertree" from tree topologies resulting from separate analyses that avoided phylogenetic reconstruction problems associated with missing data and/or unalignable sequences proved unsuccessful.
  •  
34.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts
  • 2015
  • Ingår i: Microbes and Environments. - 1342-6311 .- 1347-4405. ; 30:2, s. 145-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric—artificially joined—DNA sequences during PCR amplification or sequence assembly. Several software tools are currently available for chimera detection, but rely to various degrees on the presence of a chimera-free reference dataset for optimal performance. However, no such dataset is available for use with the fungal ITS region. This study introduces a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database for the molecular identification of fungi. This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. The performance of the dataset on a large set of artificial chimeras was above 99.5%, and we subsequently used the dataset to remove nearly 1,000 compromised fungal ITS sequences from public circulation. The dataset is available at http://unite.ut.ee/repository.php and is subject to web-based third-party curation.
  •  
35.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts
  • 2015
  • Ingår i: Microbes and Environments. - 1342-6311 .- 1347-4405. ; 30:2, s. 145-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric—artificially joined—DNA sequences during PCR amplification or sequence assembly. Several software tools are currently available for chimera detection, but rely to various degrees on the presence of a chimera-free reference dataset for optimal performance. However, no such dataset is available for use with the fungal ITS region. This study introduces a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database for the molecular identification of fungi. This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. The performance of the dataset on a large set of artificial chimeras was above 99.5%, and we subsequently used the dataset to remove nearly 1,000 compromised fungal ITS sequences from public circulation. The dataset is available at http://unite.ut.ee/repository.php and is subject to web-based third-party curation.
  •  
36.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation
  • 2011
  • Ingår i: Mycoscience. - : The Mycological Society of Japan. - 1340-3540 .- 1618-2545. ; 52:4, s. 278-282
  • Tidskriftsartikel (refereegranskat)abstract
    • Reverse complementary DNA sequences––sequences that are inadvertently cast backward and in which all purines and pyrimidines are transposed––are not uncommon in sequence databases, where they may introduce noise into sequence-based research. We show that about 1% of the public fungal ITS sequences, the most commonly sequenced genetic marker in mycology, are reverse complementary, and we introduce an open source software solution to automate their detection and reorientation. The MacOSX/Linux/UNIX software operates on public or private datasets of any size, although some 50 base pairs of the 5.8S gene of the ITS region are needed for the analysis.
  •  
37.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • An open source chimera checker for the fungal ITS region
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-0998 .- 1755-098X. ; 10:6, s. 1076-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit holds a central position in the pursuit of the taxonomic affiliation of fungi recovered through environmental sampling. Newly generated fungal ITS sequences are typically compared against the International Nucleotide Sequence Databases for a species or genus name using the sequence similarity software suite blast. Such searches are not without complications however, and one of them is the presence of chimeric entries among the query or reference sequences. Chimeras are artificial sequences, generated unintentionally during the polymerase chain reaction step, that feature sequence data from two (or possibly more) distinct species. Available software solutions for chimera control do not readily target the fungal ITS region, but the present study introduces a blast-based open source software package (available at http://www.emerencia.org/chimerachecker.html) to examine newly generated fungal ITS sequences for the presence of potentially chimeric elements in batch mode. We used the software package on a random set of 12 300 environmental fungal ITS sequences in the public sequence databases and found 1.5% of the entries to be chimeric at the ordinal level after manual verification of the results. The proportion of chimeras in the sequence databases can be hypothesized to increase as emerging sequencing technologies drawing from pooled DNA samples are becoming important tools in molecular ecology research.
  •  
38.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Approaching the taxonomic affiliation of unidentified sequences in public databases an example from the mycorrhizal fungi
  • 2005
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 6:178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi – a field where species identification often is prohibitively complex – and the much used ITS locus were chosen as test bed. Results A Perl script package called emerencia is presented. On a regular basis, it downloads select sequences from GenBank, separates the identified sequences from those insufficiently identified, and performs BLAST searches between these two datasets, storing all results in an SQL database. On the accompanying web-service http://emerencia.math.chalmers.se webcite, users can monitor the taxonomic progress of insufficiently identified sequences over time, either through active searches or by signing up for e-mail notification upon disclosure of better matches. Other search categories, such as listing all insufficiently identified sequences (and their present best fully identified matches) publication-wise, are also available. Discussion The ever-increasing use of DNA sequences for identification purposes largely falls back on the assumption that public sequence databases contain a thorough sampling of taxonomically well-annotated sequences. Taxonomy, held by some to be an old-fashioned trade, has accordingly never been more important. emerencia does not automate the taxonomic process, but it does allow researchers to focus their efforts elsewhere than countless manual BLAST runs and arduous sieving of BLAST hit lists. The emerencia system is available on an open source basis for local installation with any organism and gene group as targets.
  •  
39.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences
  • 2012
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 4, s. 37-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular data form an important research tool in most branches of mycology. A non-trivial proportion of the public fungal DNA sequences are, however, compromised in terms of quality and reliability, contributing noise and bias to sequence-borne inferences such as phylogenetic analysis, diversity assessment, and barcoding. In this paper we discuss various aspects and pitfalls of sequence quality assessment. Based on our observations, we provide a set of guidelines to assist in manual quality management of newly generated, near-full-length (Sanger-derived) fungal ITS sequences and to some extent also sequences of shorter read lengths, other genes or markers, and groups of organisms. The guidelines are intentionally non-technical and do not require substantial bioinformatics skills or significant computational power. Despite their simple nature, we feel they would have caught the vast majority of the severely compromised ITS sequences in the public corpus. Our guidelines are nevertheless not infallible, and common sense and intuition remain important elements in the pursuit of compromised sequence data. The guidelines focus on basic sequence authenticity and reliability of the newly generated sequences, and the user may want to consider additional resources and steps to accomplish the best possible quality control. A discussion on the technical resources for further sequence quality management is therefore provided in the supplementary material.
  •  
40.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification
  • 2008
  • Ingår i: Evolutionary Bioinformatics. - 1176-9343. ; 2008:4, s. 193-201
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit is the most popular locus for species identification and subgeneric phylogenetic inference in sequencebased mycological research. The region is known to show certain variability even within species, although its intraspecific variability is often held to be limited and clearly separated from interspecific variability. The existence of such a divide between intra and interspecific variability is implicitly assumed by automated approaches to species identification, but whether intraspecific variability indeed is negligible within the fungal kingdom remains contentious. The present study estimates the intraspecific ITS variability in all fungi presently available to the mycological community through the international sequence databases. Substantial differences were found within the kingdom, and the results are not easily correlated to the taxonomic affiliation or nutritional mode of the taxa considered. No single unifying yet stringent upper limit for intraspecific variability, such as the canonical 3 % threshold, appears to be applicable with the desired outcome throughout the fungi. Our results caution against simplified approaches to automated ITSbased species delimitation and reiterate the need for taxonomic expertise in the translation of sequence data into species names.
  •  
41.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective
  • 2006
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background DNA sequences are increasingly seen as one of the primary information sources for species identification in many organism groups. Such approaches, popularly known as barcoding, are underpinned by the assumption that the reference databases used for comparison are sufficiently complete and feature correctly and informatively annotated entries. Methodology/Principal Findings The present study uses a large set of fungal DNA sequences from the inclusive International Nucleotide Sequence Database to show that the taxon sampling of fungi is far from complete, that about 20% of the entries may be incorrectly identified to species level, and that the majority of entries lack descriptive and up-to-date annotations. Conclusions The problems with taxonomic reliability and insufficient annotations in public DNA repositories form a tangible obstacle to sequence-based species identification, and it is manifest that the greatest challenges to biological barcoding will be of taxonomical, rather than technical, nature.
  •  
42.
  • Ovaskainen, Otso, et al. (författare)
  • Global Spore Sampling Project: A global, standardized dataset of airborne fungal DNA
  • 2024
  • Ingår i: Scientific Data. - 2052-4463. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.
  •  
43.
  • Schoch, Conrad L., et al. (författare)
  • Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
  • 2014
  • Ingår i: Database: The Journal of Biological Databases and Curation. - : Oxford University Press (OUP). - 1758-0463. ; 2014:bau061, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.
  •  
44.
  • Tedersoo, Leho, et al. (författare)
  • Tidying up international nucleotide sequence databases: ecological, geographical and sequence quality annotation of ITS sequences of mycorrhizal fungi
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi.
  •  
45.
  • Abarenkov, Kessy, et al. (författare)
  • PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences
  • 2010
  • Ingår i: Evolutionary Bioinformatics. - 1176-9343. ; 6, s. 189-196
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA sequences accumulating in the International Nucleotide Sequence Databases (INSD) form a rich source of information for taxonomic and ecological meta-analyses. However, these databases include many erroneous entries, and the data itself is poorly annotated with metadata, making it difficult to target and extract entries of interest with any degree of precision. Here we describe the web-based workbench PlutoF, which is designed to bridge the gap between the needs of contemporary research in biology and the existing software resources and databases. Built on a relational database, PlutoF allows remote-access rapid submission, retrieval, and analysis of study, specimen, and sequence data in INSD as well as for private datasets though web-based thin clients. In contrast to INSD, PlutoF supports internationally standardized terminology to allow very specific annotation and linking of interacting specimens and species. The sequence analysis module is optimized for identification and analysis of environmental ITS sequences of fungi, but it can be modified to operate on any genetic marker and group of organisms. The workbench is available at http://plutof.ut.ee.
  •  
46.
  • Abarenkov, Kessy, et al. (författare)
  • The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered
  • 2024
  • Ingår i: Nucleic Acids Research. - 0305-1048 .- 1362-4962. ; 52:D1, s. D791-D797
  • Tidskriftsartikel (refereegranskat)abstract
    • UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into similar to 2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms. Graphical Abstract
  •  
47.
  •  
48.
  • Aime, M. C., et al. (författare)
  • An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences
  • 2006
  • Ingår i: Mycologia. - 0027-5514. ; 98:6, s. 896-905
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we provide a phylogenetically based introduction to the classes and orders of Pucciniomycotina (=Urediniomycetes), one of three subphyla of Basidiomycota. More than 8000 species of Pucciniomycotina have been described including putative saprotrophs and parasites of plants, animals and fungi. The overwhelming majority of these (similar to 90%) belong to a single order of obligate plant pathogens, the Pucciniales (=Uredinales), or rust fungi. We have assembled a dataset of previously published and newly generated sequence data from two nuclear rDNA genes (large subunit and small subunit) including exemplars from all known major groups in order to test hypotheses about evolutionary relationships among the Pucciniomycotina. The utility of combining nuc-lsu sequences spanning the entire D1-D3 region with complete nuc-ssu sequences for resolution and support of nodes is discussed. Our study confirms Pucciniomycotina as a monophyletic group of Basidiomycota. In total our results support eight major clades ranked as classes (Agaricostilbomycetes, Atractiellomycetes, Classiculomycetes, Cryptomycocolacomycetes, Cystobasidiomycetes, Microbotryomycetes, Mixiomycetes and Pucciniomycetes) and 18 orders.
  •  
49.
  • Antonelli, Alexandre, 1978, et al. (författare)
  • SUPERSMART: ecology and evolution in the era of big data
  • 2014
  • Ingår i: PeerJ PrePrints. - : PeerJ. - 2167-9843.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Rapidly growing biological data volumes – including molecular sequences, species traits, geographic occurrences, specimen collections, and fossil records – hold an unprecedented, yet largely unexplored potential to reveal how ecological and evolutionary processes generate and maintain biodiversity. Most biodiversity studies integrating ecological data and evolutionary history use an idiosyncratic step-by-step approach for the reconstruction of time-calibrated phylogenies in light of ecological and evolutionary scenarios. Here we introduce a conceptual framework, termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of biodiversity research. This framework reconstructs dated phylogenies based on the assembly of molecular datasets and collects pertinent data on ecology, distribution, and fossils of the focal clade. The data handled for each step are continuously updated as databases accumulate new records. We exemplify the practice of our method by presenting comprehensive phylogenetic and dating analyses for the orders Primates and the Gentianales. We believe that this emerging framework will provide an invaluable tool for a wide range of hypothesis-driven research questions in ecology and evolution.
  •  
50.
  • Bengtsson-Palme, Johan, 1985, et al. (författare)
  • Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data
  • 2013
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 4:10, s. 914-919
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear ribosomal internal transcribed spacer (ITS) region is the primary choice for molecular identification of fungi. Its two highly variable spacers (ITS1 and ITS2) are usually species specific, whereas the intercalary 5.8S gene is highly conserved. For sequence clustering and blast searches, it is often advantageous to rely on either one of the variable spacers but not the conserved 5.8S gene. To identify and extract ITS1 and ITS2 from large taxonomic and environmental data sets is, however, often difficult, and many ITS sequences are incorrectly delimited in the public sequence databases. We introduce ITSx, a Perl-based software tool to extract ITS1, 5.8S and ITS2 – as well as full-length ITS sequences – from both Sanger and high-throughput sequencing data sets. ITSx uses hidden Markov models computed from large alignments of a total of 20 groups of eukaryotes, including fungi, metazoans and plants, and the sequence extraction is based on the predicted positions of the ribosomal genes in the sequences. ITSx has a very high proportion of true-positive extractions and a low proportion of false-positive extractions. Additionally, process parallelization permits expedient analyses of very large data sets, such as a one million sequence amplicon pyrosequencing data set. ITSx is rich in features and written to be easily incorporated into automated sequence analysis pipelines. ITSx paves the way for more sensitive blast searches and sequence clustering operations for the ITS region in eukaryotes. The software also permits elimination of non-ITS sequences from any data set. This is particularly useful for amplicon-based next-generation sequencing data sets, where insidious non-target sequences are often found among the target sequences. Such non-target sequences are difficult to find by other means and would contribute noise to diversity estimates if left in the data set.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 180
Typ av publikation
tidskriftsartikel (157)
konferensbidrag (10)
forskningsöversikt (7)
bokkapitel (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (162)
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Nilsson, R. Henrik, ... (162)
Abarenkov, Kessy (48)
Kõljalg, Urmas (32)
Tedersoo, Leho (29)
Larsson, Karl-Henrik ... (27)
Kristiansson, Erik, ... (26)
visa fler...
Ryberg, Martin, 1976 (23)
Larsson, Ellen, 1961 (21)
Bengtsson-Palme, Joh ... (17)
Li, L. (16)
Zhang, W. (16)
Wurzbacher, Christia ... (16)
Davis, W. (16)
Esposito, B. (15)
Jones, G. (15)
Price, D. (15)
Spagnolo, S. (15)
Walker, R. (15)
Yao, L. (15)
Young, C. (15)
Gao, Y. (15)
Buchanan, J. (15)
Thomas, P. (15)
Kaufman, M (15)
Taylor, D (15)
Baker, A. (15)
Clark, M. (15)
Martin, A. (15)
Robinson, S. (15)
Gallagher, J. (15)
Schneider, M. (15)
Day, C. (15)
Garcia, J. (15)
Page, A. (15)
Antonelli, Alexandre ... (15)
West, A. (15)
Smith, P. (15)
Morris, J. (15)
Lee, S (15)
Williams, J (15)
Wood, R (15)
Williams, M (15)
Bowden, M. (15)
Pereira, A (15)
Afzal, M (15)
Young, R. (15)
Rodrigues, P (15)
Silva, C. (15)
Rodriguez, J. (15)
Duran, I (15)
visa färre...
Lärosäte
Göteborgs universitet (165)
Chalmers tekniska högskola (58)
Uppsala universitet (43)
Kungliga Tekniska Högskolan (16)
Sveriges Lantbruksuniversitet (15)
Karolinska Institutet (7)
visa fler...
Lunds universitet (6)
Naturhistoriska riksmuseet (4)
Umeå universitet (1)
Linnéuniversitetet (1)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (178)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (177)
Lantbruksvetenskap (47)
Medicin och hälsovetenskap (36)
Teknik (12)
Samhällsvetenskap (3)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy