SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nimmo K.) "

Sökning: WFRF:(Nimmo K.)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Romagnoni, A, et al. (författare)
  • Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10351-
  • Tidskriftsartikel (refereegranskat)abstract
    • Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
  •  
4.
  • Marcote, B., et al. (författare)
  • A repeating fast radio burst source localized to a nearby spiral galaxy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 577:7789, s. 190-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
  •  
5.
  • Amiri, M., et al. (författare)
  • Periodic activity from a fast radio burst source
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582:7812, s. 351-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.
  •  
6.
  • Scholz, P., et al. (författare)
  • Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB similar to 180916.J0158+65
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on simultaneous radio and X-ray observations of the repeating fast radio burst source FRB 180916.J0158+65 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME), Effelsberg, and Deep Space Network (DSS-14 and DSS-63) radio telescopes and the Chandra X-ray Observatory. During 33 ks of Chandra observations, we detect no radio bursts in overlapping Effelsberg or Deep Space Network observations and a single burst during CHIME/FRB source transits. We detect no X-ray events in excess of the background during the Chandra observations. These non-detections imply a 5 sigma limit of <5 x 10(-10)erg cm(-2)for the 0.5-10 keV fluence of prompt emission at the time of the radio burst and 1.3 x 10(-9)erg cm(-2)at any time during the Chandra observations. Given the host-galaxy redshift of FRB 180916.J0158+65 (z similar to 0.034), these correspond to energy limits of <1.6 x 10(45)erg and <4 x 10(45)erg, respectively. We also place a 5 sigma limit of <8 x 10(-15)erg s(-1) cm(-2)on the 0.5-10 keV absorbed flux of a persistent source at the location of FRB 180916.J0158+65. This corresponds to a luminosity limit of <2 x 10(40)erg s(-1). Using an archival set of radio bursts from FRB 180916.J0158+65, we search for prompt gamma-ray emission in Fermi/GBM data but find no significant gamma-ray bursts, thereby placing a limit of 9 x 10(-9)erg cm(-2)on the 10-100 keV fluence. We also search Fermi/LAT data for periodic modulation of the gamma-ray brightness at the 16.35 days period of radio burst activity and detect no significant modulation. We compare these deep limits to the predictions of various fast radio burst models, but conclude that similar X-ray constraints on a closer fast radio burst source would be needed to strongly constrain theory.
  •  
7.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
8.
  • Nimmo, K., et al. (författare)
  • Burst timescales and luminosities as links between young pulsars and fast radio bursts
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:3, s. 393-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to.
  •  
9.
  • Pleunis, Z., et al. (författare)
  • LOFAR Detection of 110-188MHz emission and frequency-dependent activity from FRB20180916B
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The object FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (∼150 Mpc), along with detailed studies of the bursts, has revealed many clues about its nature, including a 16.3 day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to freëCfree absorption in the source's local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (∼40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ∼2-3 rad m variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show five CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed toward lower frequencies by about 3 days from 600 to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.
  •  
10.
  • Hannemann, P, et al. (författare)
  • Patterns in current anaesthesiological peri-operative practice for colonic resections : a survey in five northern-European countries
  • 2006
  • Ingår i: Acta Anaesthesiologica Scandinavica. - Oxon, United Kingdom : Blackwell Publishing. - 0001-5172 .- 1399-6576. ; 50:9, s. 1152-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For colorectal surgery, evidence suggests that optimal management includes: no pre-operative fasting, a thoracic epidural analgesia continued for 2 days post-operatively, and avoidance of fluid overload. In addition, no long-acting benzodiazepines on the day of surgery and use of short-acting anaesthetic medication may be beneficial. We examined whether these strategies have been adopted in five northern-European countries.Methods: In 2003, a questionnaire concerning peri-operative anaesthetic routines in elective, open colonic cancer resection was sent to the chief anaesthesiologist in 258 digestive surgical centres in Scotland, the Netherlands, Denmark, Sweden and Norway.Results: The response rate was 74% (n = 191). Although periods of pre-operative fasting up to 48 h were reported, most (> 85%) responders in all countries declared to adhere to guidelines for pre-operative fasting and oral clear liquids were permitted until 2-3 h before anaesthesia. Solid food was permitted up to 6-8 h prior to anaesthesia. In all countries more than 85% of the responders indicated that epidural anaesthesia was routinely used. Except for Denmark, long-acting benzodiazepines were still widely used. Short-acting anaesthetics were used in all countries except Scotland where isoflurane is the anaesthetic of choice. With the exception of Denmark, intravenous fluids were used unrestrictedly.Conclusion: In northern Europe, most anaesthesiologists adhere to evidence-based optimal management strategies on pre-operative fasting, thoracic epidurals and short-acting anaesthetics. However, premedication with longer-acting agents is still common. Avoidance of fluid overload has not yet found its way into daily practice. This may leave patients undergoing elective colonic surgery at risk of oversedation and excessive fluid administration with potential adverse effects on surgical outcome.
  •  
11.
  • Tobie, G., et al. (författare)
  • Science goals and mission concept for the future exploration of Titan and Enceladus
  • 2014
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 59-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
12.
  • Bergemalm, Daniel, 1977-, et al. (författare)
  • Systemic Inflammation in Preclinical Ulcerative Colitis
  • 2021
  • Ingår i: Gastroenterology. - : AGA Institute. - 0016-5085 .- 1528-0012. ; 161:5, s. 1526-1539.e9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins.Methods: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n = 72) and matched healthy controls (n = 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n = 101) and healthy controls (n = 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n = 41) and matched healthy controls (n = 37) were explored.Results: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P < .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1β, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-κB, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve = 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP-1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis.Conclusions: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors.
  •  
13.
  • Hewitt, Dante M., et al. (författare)
  • Milliarcsecond localization of the hyperactive repeating FRB 20220912A
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:2, s. 1814-1826
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very long-baseline interferometry (VLBI) observations of the hyperactive repeating FRB 20220912A using the European VLBI Network (EVN) outside of regular observing sessions (EVN-Lite). We detected 150 bursts from FRB 20220912A over two observing epochs in 2022 October. Combining the burst data allows us to localize FRB 20220912A to a precision of a few milliarcseconds, corresponding to a transverse scale of less than 10 pc at the distance of the source. This precise localization shows that FRB 20220912A lies closer to the centre of its host galaxy than previously found, although still significantly offset from the host galaxy's nucleus. On arcsecond scales, FRB 20220912A is coincident with a persistent continuum radio source known from archival observations; however, we find no compact persistent emission on milliarcsecond scales. The 5σ upper limit on the presence of such a compact persistent radio source is 120 μJy, corresponding to a luminosity limit of (D/362.4 Mpc)erg s-1 Hz-1. The persistent radio emission is thus likely to be from star formation in the host galaxy. This is in contrast to some other active FRBs, such as FRB 20121102A and FRB 20190520B.
  •  
14.
  • Kirsten, Franz, 1983, et al. (författare)
  • A link between repeating and non-repeating fast radio bursts through their energy distributions
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; 8:3, s. 337-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extremely energetic, millisecond-duration radio flashes that reach Earth from extragalactic distances. Broadly speaking, FRBs can be classified as repeating or (apparently) non-repeating. It is still unclear, however, whether the two types share a common physical origin and differ only in their activity rate. Here we report on an observing campaign that targeted one hyperactive repeating source, FRB 20201124A, for more than 2,000 h using four 25–32 m class radio telescopes. We detected 46 high-energy bursts, many more than one would expect given previous observations of lower-energy bursts using larger radio telescopes. We find a high-energy burst distribution that resembles that of the non-repeating FRB population, suggesting that apparently non-repeating FRB sources may simply be the rarest bursts from repeating sources. Also, we discuss how FRB 20201124A contributes strongly to the all-sky FRB rate and how similar sources would be observable even at very high redshift.
  •  
15.
  • Kirsten, Franz, 1983, et al. (författare)
  • Detection of two bright radio bursts from magnetar SGR 1935 + 2154
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:4, s. 414-422
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts are millisecond-duration, bright radio signals (fluence 0.1-100 Jy ms) emitted from extragalactic sources of unknown physical origin. The recent CHIME/FRB and STARE2 detection of an extremely bright (fluence similar to MJy ms) radio burst from the Galactic magnetar SGR 1935+2154 supports the hypothesis that (at least some) fast radio bursts are emitted by magnetars at cosmological distances. In follow-up observations totalling 522.7 h on source, we detect two bright radio bursts with fluences of 112 +/- 22 Jy ms and 24 +/- 5 Jy ms, respectively. Both bursts appear to be affected by interstellar scattering and we measure significant linear and circular polarization for the fainter burst. The bursts are separated in time by similar to 1.4 s, suggesting a non-Poissonian, clustered emission process-similar to those seen in some repeating fast radio bursts. Together with the burst reported by CHIME/FRB and STARE2, as well as a much fainter burst seen by FAST (fluence 60 mJy ms), our observations demonstrate that SGR 1935+2154 can produce bursts with apparent energies spanning roughly seven orders of magnitude, and that the burst rate is comparable across this range. This raises the question of whether these four bursts arise from similar physical processes, and whether the fast radio burst population distribution extends to very low energies (similar to 10(30) erg, isotropic equivalent).
  •  
16.
  •  
17.
  • Nimmo, K., et al. (författare)
  • A burst storm from the repeating FRB 20200120E in an M81 globular cluster
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2281-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The repeating fast radio burst (FRB) source FRB 20200120E is exceptional because of its proximity and association with a globular cluster. Here we report 60 bursts detected with the Effelsberg telescope at 1.4 GHz. We observe large variations in the burst rate, and report the first FRB 20200120E 'burst storm', where the source suddenly became active and 53 bursts (fluence ≥0.04 Jy ms) occurred within only 40 min. We find no strict periodicity in the burst arrival times, nor any evidence for periodicity in the source's activity between observations. The burst storm shows a steep energy distribution (power-law index α = 2.39 ± 0.12) and a bimodal wait-time distribution, with log-normal means of 0.94+0.07−0.06 s and 23.61+3.06−2.71 s. We attribute these wait-time distribution peaks to a characteristic event time-scale and pseudo-Poisson burst rate, respectively. The secondary wait-time peak at ∼1 s is ∼50 × longer than the ∼24 ms time-scale seen for both FRB 20121102A and FRB 20201124A - potentially indicating a larger emission region, or slower burst propagation. FRB 20200120E shows order-of-magnitude lower burst durations and luminosities compared with FRB 20121102A and FRB 20201124A. Lastly, in contrast to FRB 20121102A, which has observed dispersion measure (DM) variations of ΔDM > 1 pc cm−3 on month-to-year time-scales, we determine that FRB 20200120E's DM has remained stable (ΔDM < 0.15 pc cm−3) over >10 months. Overall, the observational characteristics of FRB 20200120E deviate quantitatively from other active repeaters, but it is unclear whether it is qualitatively a different type of source.
  •  
18.
  • Nimmo, K., et al. (författare)
  • Highly polarized microstructure from the repeating FRB 20180916B
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:6, s. 594-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a variety of spectral, temporal and polarimetric properties that can unveil clues into their emission physics and propagation effects in the local medium. Here, we present the high-time-resolution (down to 1 mu s) polarimetric properties of four 1.7 GHz bursts from the repeating FRB 20180916B, which were detected in voltage data during observations with the European Very Long Baseline Interferometry Network. We observe a range of emission timescales that spans three orders of magnitude, with the shortest component width reaching 3-4 mu s (below which we are limited by scattering). We demonstrate that all four bursts are highly linearly polarized (greater than or similar to 80%), show no evidence of significant circular polarization (less than or similar to 15%), and exhibit a constant polarization position angle (PPA) during and between bursts. On short timescales (less than or similar to 100 mu s), however, there appear to be subtle PPA variations (of a few degrees) across the burst profiles. These observational results are most naturally explained in an FRB model in which the emission is magnetospheric in origin, in contrast to models in which the emission originates at larger distances in a relativistic shock. High-time-resolution observations of the repeating fast radio burst source FRB 20180916B reveal changes to the polarization properties of the emission on timescales of a few microseconds, indicating an origin in the source magnetosphere.
  •  
19.
  • Nimmo, K., et al. (författare)
  • Milliarcsecond Localization of the Repeating FRB 20201124A
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Very long baseline interferometric (VLBI) localizations of repeating fast radio bursts (FRBs) have demonstrated a diversity of local environments: from nearby star-forming regions to globular clusters. Here we report the VLBI localization of FRB 20201124A using an ad hoc array of dishes that also participate in the European VLBI Network (EVN). In our campaign, we detected 18 bursts from FRB 20201124A at two separate epochs. By combining the visibilities from both epochs, we were able to localize FRB 20201124A with a 1 sigma uncertainty of 2.7 mas. We use the relatively large burst sample to investigate astrometric accuracy and find that for greater than or similar to 20 baselines (greater than or similar to 7 dishes) we can robustly reach milliarcsecond precision even using single-burst data sets. Subarcsecond precision is still possible for single bursts, even when only similar to 6 baselines (four dishes) are available. In such cases, the limited uv coverage for individual bursts results in very high side-lobe levels. Thus, in addition to the peak position from the dirty map, we also explore smoothing the structure in the dirty map by fitting Gaussian functions to the fringe pattern in order to constrain individual burst positions, which we find to be more reliable. Our VLBI work places FRB 20201124A 710 +/- 30 mas (1 sigma uncertainty) from the optical center of the host galaxy, consistent with originating from within the recently discovered extended radio structure associated with star formation in the host galaxy. Future high-resolution optical observations, e.g., with Hubble Space Telescope, can determine the proximity of FRB 20201124A's position to nearby knots of star formation.
  •  
20.
  • Snelders, M. P., et al. (författare)
  • Detection of ultra-fast radio bursts from FRB 20121102A
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:12, s. 1486-1496
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic transient flashes of radio waves with typical durations of milliseconds. FRBs have been shown, however, to present a wide range of timescales: some show sub-microsecond sub-bursts while others last up to a few seconds. Probing FRBs on a range of timescales is crucial for understanding their emission physics, how to detect them effectively and how to maximize their utility as astrophysical probes. FRB 20121102A is the first known repeating FRB source. Here we show that FRB 20121102A produces isolated microsecond-duration bursts with durations less than one-tenth the duration of other currently known FRBs. The polarimetric properties of these microsecond-duration bursts resemble those of the longer-lasting bursts, suggesting a common emission mechanism producing FRBs with durations spanning three orders of magnitude. In detecting and characterizing these microsecond-duration bursts, we show that there exists a population of ultra-fast radio bursts that current wide-field FRB searches are missing due to insufficient time resolution. These results indicate that FRBs occur more frequently and with greater diversity than initially thought. This could also influence our understanding of energy, wait time and burst rate distributions.
  •  
21.
  •  
22.
  • Ventham, N. T., et al. (författare)
  • Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease
  • 2016
  • Ingår i: Nature Communications. - London, United Kingdom : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8(+) T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy