SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nisar Arsalan) "

Sökning: WFRF:(Nisar Arsalan)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nair, Sujith, 1980-, et al. (författare)
  • Impact of knowledge brokering on performance heterogeneity among business models
  • 2012
  • Ingår i: Management Decision. - : Emerald. - 0025-1747 .- 1758-6070. ; 50:9, s. 1649-1660
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE - The strategic management literature lacks a comprehensive explanation as to why seemingly similar business models in the same industry perform differently. This paper strives to explain this phenomenon. DESIGN/METHODOLOGY/APPROACH - The model is conceptualized and accompanied by a case study on the airline industry to explain knowledge brokerage that creates value from the effective utilization of knowledge resources acquired from intra- and inter-firm environments. FINDINGS - The model explains a cyclical view of business model flexibility in which the knowledge-based resource accumulation of the business model is spread across the intra- and inter-firm environments. Knowledge brokerage strategies from the inter- and intra-firm environments result in improved performance of the business model. The flexibility that the business model acquires is determined by how efficiently resource accumulation is aligned with its external environment. ORIGINALITY/VALUE - The paper effectively integrates the concepts of knowledge brokerage and business models from a resource accumulation-based view and simultaneously arrives at the performance heterogeneity of seemingly similar business models within the same industry. It has performance implications for firms that start out without any distinct resources of their own, or that use an imitated business model, to attain better performance through business model evolution aligned with successful knowledge brokerage strategies. It adds to the resource accumulation literature by explaining how resources can be effectively acquired to create value.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Paul, Alexandra, 1988, et al. (författare)
  • Effect of ambient temperature on respiratory tract cells exposed to SARS-CoV-2 viral mimicking nanospheres - An experimental study
  • 2021
  • Ingår i: Biointerphases. - : American Vacuum Society. - 1559-4106 .- 1934-8630. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December–February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy