SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nislow Corey) "

Sökning: WFRF:(Nislow Corey)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dinér, Peter, 1976, et al. (författare)
  • Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast.
  • 2011
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG) pathway is a conserved mitogen-activated protein kinase (MAPK) signal transduction system that often serves as a model to analyze systems level properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be activated by various environmental cues and it controls transcription, translation, transport, and cell cycle adaptations in response to stress conditions. A powerful means to study signaling in living cells is to use kinase inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date. Herein, we describe the design, synthesis, and biological application of small molecule inhibitors that are cell-permeable, fast-acting, and highly efficient against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase activity both in vitro and in vivo. Next, we use these novel inhibitors to pinpoint the time of Hog1 action during recovery from G(1) checkpoint arrest, providing further evidence for a specific role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence, we describe a novel tool for chemical genetic analysis of MAPK signaling and provide novel insights into Hog1 action.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Li, Zhijian, et al. (författare)
  • Systematic exploration of essential yeast gene function with temperature-sensitive mutants.
  • 2011
  • Ingår i: Nature biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 29:4, s. 361-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)-based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.
  •  
4.
  • Mer, Arvind Singh, et al. (författare)
  • Biological and therapeutic implications of a unique subtype of NPM1 mutated AML
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification. Here we report two distinct subtypes within NPM1 mutated AML patients, which we label as primitive and committed based on the respective presence or absence of a stem cell signature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping (CyToF) analysis, we associate each subtype with specific molecular characteristics, disease differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a differential drug response of the subtypes to specific kinase inhibitors, irrespective of the FLT3-ITD status. Differential drug responses of the primitive and committed subtype are validated in an independent AML cohort. Our results highlight heterogeneity among NPM1 mutated AML patient samples based on stemness and suggest that the addition of kinase inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have therapeutic benefit. Molecular heterogeneity of acute myeloid leukaemia (AML) across patients is a major challenge for prognosis and therapy. Here, the authors show that NPM1 mutated AML is a heterogeneous class, consisting of two subtypes which exhibit distinct molecular characteristics, differentiation state, patient survival and drug response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Wang, Jin (1)
Wang, Mei (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Blomberg, Anders, 19 ... (1)
visa fler...
Bonaldo, Paolo (1)
Tamás, Markus J., 19 ... (1)
Minucci, Saverio (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Clarke, Robert (1)
Kumar, Ashok (1)
Grøtli, Morten, 1966 (1)
Warringer, Jonas, 19 ... (1)
Hohmann, Stefan, 195 ... (1)
Wysocki, Robert (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Albert, Matthew L (1)
Veide Vilg, Jenny, 1 ... (1)
Zhu, Changlian, 1964 (1)
Lopez-Otin, Carlos (1)
Liu, Bo (1)
Ghavami, Saeid (1)
Harris, James (1)
Chen, Xi (1)
Wang, Ke (1)
Marchetti, Piero (1)
Zhang, Hong (1)
Zorzano, Antonio (1)
Bozhkov, Peter (1)
Fan, Jia (1)
Petersen, Morten (1)
Skulachev, Vladimir ... (1)
Gukovsky, Ilya (1)
Fujii, Jun (1)
Przyklenk, Karin (1)
Lehmann, Soren (1)
Dick, John E. (1)
Kumar, Raj (1)
Noda, Takeshi (1)
Zhao, Ying (1)
Perry, George (1)
visa färre...
Lärosäte
Göteborgs universitet (3)
Uppsala universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy