SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niu Gang) "

Sökning: WFRF:(Niu Gang)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Yu, Wenjin, et al. (författare)
  • Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid
  • 2022
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It is a critical challenge to diagnose leptomeningeal metastasis (LM), given its technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more time to classify cells under a microscope.Objective: This study aims to establish a deep learning model to classify cancer cells in CSF, thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.Method: The cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from 90 LM patients in the research. We used two deep convolutional neural networks (CNN) models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by Resnet-inception-V2. We evaluated the performance of the proposed models on two external datasets and compared them with the results from 42 doctors of various levels of experience in the human-machine tests. Furthermore, we develop a computer-aided diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.Results: With respect to the validation set, the mean average precision (mAP) of CNN1 is over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-machine tests, the accuracy of CNN1 is similar to the results from experts, with higher accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10% higher than that of experts, with a time consumption of only one-third of that consumed by an expert. Using the CAD software saves 90% working time of cytologists.Conclusion: A deep learning method has been developed to assist the LM diagnosis with high accuracy and low time consumption effectively. Thanks to labeled data and step-by-step training, our proposed method can successfully classify cancer cells in the CSF to assist LM diagnosis early. In addition, this unique research can predict cancer’s primary source of LM, which relies on cytomorphologic features without immunohistochemistry. Our results show that deep learning can be widely used in medical images to classify cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the proposed method is significantly higher than that of specialist doctors, and its performance is better than that of junior doctors and interns. The application of CNNs and CAD software may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
  •  
3.
  • Geng, Wenping, et al. (författare)
  • Conductive Domain-Wall Temperature Sensors of LiNbO3 Ferroelectric Single-Crystal Thin Films
  • 2021
  • Ingår i: IEEE Electron Device Letters. - : IEEE. - 0741-3106 .- 1558-0563. ; 42:12, s. 1841-1844
  • Tidskriftsartikel (refereegranskat)abstract
    • Domain wall current (DWC) plays a key role in storage devices, logic devices and sensors due to its high on-off ratio and nano structure size in the era of nanoelectronics technology. In this work, the DWC of single crystal LiNbO3 thin film was studied by piezoresponse force microscope (PFM) and conducting atomic force microscope (c-AFM). We mainly focus on voltage and temperature dependence of DWC which increases with the voltage and temperatures. Based on this research, the packaged DWC temperature sensor is fabricated and applied in wide temperature range. The existence of domain walls makes the current on-off ratio as high as 103 at the voltage of 15 V. Our study shows that DWC has a negative temperature coefficient (NTC) from 140 K to 500 K. The current increases from 3 pA to 57 μA, which is attributed to the conductivity of switched domain. This work proposes a new type temperature sensor with wide temperature range and high compatibility and sensitivity. In addition, it provides support for harsh environment applications of ferroelectric domain engineering devices.
  •  
4.
  • Guirguis, Emilia, et al. (författare)
  • A Role for Phosphodiesterase 3B in Acquisition of Brown Fat Characteristics by White Adipose Tissue in Male Mice.
  • 2013
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 154:9, s. 3152-3167
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat-burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We utilized C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein (Ctbp), bone morphogenetic protein 7 (Bmp7) and PR domain containing 16 (Prdm16), but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased expression of cyclooxygenase-2 (COX-2), which catalyzes prostaglandin synthesis and is thought to be important in formation of BAT in WAT, and of elongation of very long chain fatty acids 3 (Elovl3), which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat-burning and induction of BAT in KO EWAT. These data provide insight into mechanisms of BAT formation in mouse EWAT, suggesting that, in C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.
  •  
5.
  • Höcker, Jan, et al. (författare)
  • Growth and structure of ultrathin praseodymium oxide layers on ruthenium(0001)
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - 1463-9076.
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth, morphology, structure, and stoichiometry of ultrathin praseodymium oxide layers on Ru(0001) were studied using low-energy electron microscopy and diffraction, photoemission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. At a growth temperature of 760 [degree]C, the oxide is shown to form hexagonally close-packed (A-type) Pr2O3(0001) islands that are up to 3 nm high. Depending on the local substrate step density, the islands either adopt a triangular shape on sufficiently large terraces or acquire a trapezoidal shape with the long base aligned along the substrate steps.
  •  
6.
  • Niu, Hong, et al. (författare)
  • When the CSI from Alice to Bob is Unavailable : What Can Eve Do to Eliminate the Artificial Noise?
  • 2022
  • Ingår i: 2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL). - : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • Artificial noise elimination (ANE) has arisen as a possible countermeasure for mitigating the influence of artificial noise (AN) at the eavesdropper (Eve). However, conventional ANE schemes require the attainable channel state information (CSI) between the transmitter (Alice) and legitimate receiver (Bob), which reduces the feasibility of this proposal. In this paper, we investigate the issue of ANE without the CSI of Alice-Bob link by minimizing the artificial-noise-to-signal ratio (ANSR). Moreover, the detailed minor component analysis (MCA) algorithm is presented, and the computational complexity is quantified. Simulation results demonstrate that MCA can effectively degrade the influence of AN without the knowledge of CSI.
  •  
7.
  • Zhang, Qiyue, et al. (författare)
  • Integrated CFD and MBD methods for dynamic performance analysis of a high-speed train transitioning through varied windbreak corridor designs
  • 2024
  • Ingår i: Journal of Wind Engineering and Industrial Aerodynamics. - 0167-6105. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • With increasing train speeds, the wind environment along routes has become complex, variable, and extreme. Constructing windbreak facilities is an effective strategy to enhance train operational safety in windy zones. Various windbreak designs exhibit notable differences in improving train dynamic performance, and economic considerations are also crucial. Utilizing the non-constant compressible Reynolds time-averaged equation URANS (Unsteady Reynold-averaged Navier–Stokes) alongside the shear-stress transport (SST) k-ω turbulence model, this study simulates the non-constant aerodynamic characteristics of a 350 km/h high-speed train traversing through different forms of windbreak corridors in a 30 m/s wind zone. The train's dynamic response was captured using a combined CFD–MBD (Computational Fluid Dynamics and Multi-Body Dynamics) offline time-domain simulation, the accuracy of which was verified experimentally. Results indicate that vortices of various positions and shapes form in the flow field along the windbreak corridor depending on the size of the openings. Using the no-windbreak corridor (Case 1) and the fully enclosed corridor (Case 4) as control groups, it was observed that smaller openings lead to more stable airflow, enhancing peak damping and fluctuation effects, albeit with varying stages of aerodynamic load fluctuation. The 1/3-opening windbreak corridor (Case 3) effectively mitigated the sudden aerodynamic load changes at the wind zone transition of the 2/3-opening windbreak corridor (Case 2), with the primary fluctuation area in Case 3 being the wind section. Dynamic analyses revealed that Case 2 exhibited insufficient lateral aerodynamic performance, raising derailment concerns. In contrast, Case 3 ensured travel safety and comfort effectively, while Case 4 offered excessive protective capacity. This study's findings serve as a valuable reference for designing windbreak corridors and ensuring the safe operation of trains in windy regions.
  •  
8.
  • Zhu, Fentian, et al. (författare)
  • Transient aerodynamic behavior of a high-speed Maglev train in plate braking under crosswind
  • 2024
  • Ingår i: Physics of Fluids. - 1089-7666 .- 1070-6631. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The test speed of high-speed maglev trains (HSMT) exceeds 600 km/h, requiring higher braking performance and technology. Plate braking technology, which is a suitable choice, has been applied for engineering the high-speed test vehicles. However, the unsteady aerodynamic response during the opening process of HSMT under crosswind needs to be studied. This study explores the unsteady aerodynamic characteristics of a HSMT with a train speed of 600 km/h during plate braking at different crosswind speeds. The plate motion is achieved based on the dynamic grid technology, and the unsteady flow field around the train is simulated using the unsteady Reynolds time averaged equation and the shear stress transport k-omega (SST k–ω) turbulence model. This calculation method was verified using wind tunnel test data. The peak aerodynamic drag (AD) of the braking plates overshot during opening. Under a crosswind of 20 m/s, the AD peak of the first braking plate was 11% larger than that without crosswind. The middle braking plates were significantly affected by upstream vortex shedding, and the AD fluctuation was the most severe. The AD of the head and tail coaches is significantly affected by crosswind. With an increase in the crosswind speed, the AD of the head and tail coaches decreased and increased, respectively. Compared with no crosswind, under a crosswind of 20 m/s, the AD of the head coach decreased by 43%, and the AD of the tail coach increased by a factor of approximately 1.1 times. Furthermore, the AD fluctuation of the tail coach was the most severe.
  •  
9.
  • Zhuang, Ting, et al. (författare)
  • SHARPIN stabilizes estrogen receptor a and promotes breast cancer cell proliferation
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:44, s. 77137-77151
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor a is expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression. In our study, we identified the novel E3 ubiquitin ligase SHARPIN function to facilitate ERα signaling. SHARPIN is highly expressed in human breast cancer and correlates with ERα protein level by immunohistochemistry. SHARPIN expression level correlates with poor prognosis in ERα positive breast cancer patients. SHARPIN depletion based RNA-sequence data shows that ERα signaling is a potential SHARPIN target. SHARPIN depletion significantly decreases ERα protein level, ERα target genes expression and estrogen response element activity in breast cancer cells, while SHARPIN overexpression could reverse these effects. SHARPIN depletion significantly decreases estrogen stimulated cell proliferation in breast cancer cells, which effect could be further rescued by ERα overexpression. Further mechanistic study reveals that SHARPIN mainly localizes in the cytosol and interacts with ERα both in the cytosol and the nuclear. SHARPIN regulates ERα signaling through protein stability, not through gene expression. SHARPIN stabilizes ERα protein via prohibiting ERα protein poly-ubiquitination. Further study shows that SHARPIN could facilitate the mono-ubiquitinaiton of ERα at K302/303 sites and facilitate ERE luciferase activity. Together, our findings propose a novel ERα modulation mechanism in supporting breast cancer cell growth, in which SHARPIN could be one suitable target for development of novel therapy for ERα positive breast cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy