SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noble Janelle A.) "

Sökning: WFRF:(Noble Janelle A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mychaleckyj, Josyf C., et al. (författare)
  • HLA genotyping in the international Type 1 Diabetes Genetics Consortium
  • 2010
  • Ingår i: Clinical Trials. - : SAGE Publications. - 1740-7753 .- 1740-7745. ; 7:1 suppl., s. 75-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers. Purpose In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years. Methods Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences. Results A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances. Limitations The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required. Conclusions High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies. Clinical Trials 2010; 7: S75-S87. http://ctj.sagepub.com.
  •  
2.
  • Noble, Janelle A., et al. (författare)
  • HLA Class I and Genetic Susceptibility to Type 1 Diabetes Results From the Type 1 Diabetes Genetics Consortium
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:11, s. 2972-2979
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study. RESEARCH DESIGN AND METHODS-Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients. RESULTS-Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes-associated alleles were B*5701 (odds ratio 0.19; P = 4 x 10(-11)) and B*3906 (10.31; P = 4 X 10(-10)). Other significantly type 1 diabetes-associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class H. Other class I type 1 diabetes associations appear to be specific to individual class H haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403). CONCLUSIONS-These data indicate that HLA class I alleles, in addition to and independently from HLA class H alleles, are associated with type 1 diabetes. Diabetes 59:2972-2979, 2010
  •  
3.
  • Aydemir, Özkan, et al. (författare)
  • Polymorphisms in Intron 1 of HLA-DRA Differentially Associate with Type 1 Diabetes and Celiac Disease and Implicate Involvement of Complement System Genes C4A and C4B
  • Ingår i: eLife. - 2050-084X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymorphisms in genes in the human leukocyte antigen (HLA) class II region comprise the most important inherited risk factors for many autoimmune diseases including type 1 diabetes (T1D) and celiac disease (CD): both diseases are positively associated with the HLA- DR3 haplotype (DRB1*03:01-DQA1*05:01-DQB1*02:01). Studies of two different populations have recently documented that T1D susceptibility in HLA-DR3 homozygous individuals isstratified by a haplotype consisting of three single nucleotide polymorphisms (“tri-SNP”) in intron 1 of the HLA-DRA gene. In this study, we use a large cohort from the longitudinal “The Environmental Determinants of Diabetes in the Young” (TEDDY) study to further refine the tri-SNP association with T1D and with autoantibody-defined T1D endotypes. We found that the tri-SNP association is primarily in subjects whose first-appearing T1D autoantibody is to insulin. In addition, we discovered that the tri-SNP is also associated with celiac disease (CD), and that the particular tri-SNP haplotype (“101”) that is negatively associated with T1D risk is positively associated with risk for CD. The opposite effect of the tri-SNP haplotype on two DR3-associated diseases can enhance and refine current models of disease prediction based on genetic risk. Finally, we investigated possible functional differences between the individuals carrying high and low-risk tri-SNP haplotypes, and found that differences in complement system genes C4A and C4B may underlie the observed divergence in disease risk.
  •  
4.
  • Pugliese, Alberto, et al. (författare)
  • Sequence analysis of the diabetes-protective human leukocyte antigen-DQB1*0602 allele in unaffected, islet cell antibody-positive first degree relatives and in rare patients with type 1 diabetes
  • 1999
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 84:5, s. 1722-1728
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA)-DQA1*0102/DQB1*0602/DRB1*1501 (DR2) haplotype confers strong protection from type 1 diabetes. Growing evidence suggests that such protection may be mostly encoded by the DQB1*0602 allele, and we reported that even first degree relatives with islet cell antibodies (ICA) have an extremely low diabetes risk if they carry DQB1*0602. Recently, novel variants of the DQB1*0602 and *0603 alleles were reported in four patients with type 1 diabetes originally typed as DQB1*0602 with conventional techniques. One inference from this observation is that DQB1*0602 may confer absolute protection and may never occur in type 1 diabetes. By this hypothesis, all patients typed as DQB1*0602 positive with conventional techniques should carry one of the above diabetes-permissive variants instead of the protective DQB1*0602. Such variants could also occur in ICA/DQB1*0602-positive relatives, with the implication that their diabetes risk could be significantly higher than previously estimated. We therefore sequenced the DQB1*0602 and DQA1*0102 alleles in all ICA/DQB1*0602-positive relatives (n = 8) previously described and in six rare patients with type 1 diabetes and DQB1*0602. We found that all relatives and patients carry the known DQB1*0602 and DQA1*0102 sequences, and none of them has the mtDNA A3243G mutation associated with late-onset diabetes in ICA-positive individuals. These findings suggest that diabetes-permissive DQB1*0602/3 variants may be very rare. Thus, although the protective effect associated with DQB1*0602 is extremely powerful, it is not absolute. Nonetheless, the development of diabetes in individuals with DQB1*0602 remains extremely unlikely, even in the presence of ICA, as confirmed by our further evaluation of ICA/DQB1*0602-positive relatives, none of whom has yet developed diabetes.
  •  
5.
  • Erlich, Henry, et al. (författare)
  • HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: Analysis of the Type 1 Diabetes Genetics Consortium families
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:4, s. 1084-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The Type 1 Diabetes Genetics Consortium has collected type 1 diabetic families worldwide for genetic analysis. The major genetic determinants of type 1 diabetes are alleles at the HLA-DRB1 and DQB1 loci, with both susceptible and protective DR-DQ haplotypes present in all human populations. The aim of this study is to estimate the risk conferred by specific DR-DQ haplotypes and genotypes. RESEARCH DESIGN AND METHODS:-Six hundred and seven Caucasian families and 38 Asian families were typed at high resolution for the DRB1, DQA1, and DQB1 loci. The association analysis was performed by comparing the frequency of DR-DQ haplotypes among the chromosomes transmitted to an affected child with the frequency of chromosomes not transmitted to any affected child. RESULTS-A number of susceptible, neutral, and protective DR-DQ haplotypes have been identified, and a statistically significant hierarchy of type 1 diabetes risk has been established. The most susceptible haplotypes are the DRB1*0301-DQA1*0501-DQB1*0201 (odds ratio [OR] 3.64) and the DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB*0302, and DRB1*0402-DQA1*0301-DQB1*0302 haplotypes (ORs 11.37, 8.39, and 3.63), followed by the DRB1*0404-DQA1*0301-DQB1*0302 (OR 1.59) and the DRB1*0801-DQB1*0401-DQB1*0402 (OR 1.25) haplotypes. The most protective haplotypes are DRB1*1501-DQA1*0102-DQB1*0602 (OR 0.03), DRB1*1401-DQA1*0101-DQB1*0503 (OR 0.02), and DRB1*0701-DQA1*0201-DQB1*0303 (OR 0.02). CONCLUSIONS-Specific combinations of alleles at the DRB1, DQA1, and DQB1 loci determine the extent of haplotypic risk. The comparison of closely related DR-DQ haplotype pairs with different type I diabetes risks allowed identification of specific amino acid positions critical in determining disease susceptibility. These data also indicate that the risk associated with specific HLA haplotypes can be influenced by the genotype context and that the trans-complementing heterodimer encoded by DQA1*0501 and DQB1*0302 confers very high risk.
  •  
6.
  • Jiang, Ziyu, et al. (författare)
  • HLA class I genes modulate disease risk and age at onset together with DR-DQ in Chinese patients with insulin-requiring type 1 diabetes
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 64:9, s. 2026-2036
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The study aimed to investigate the effects of HLA class I genes on susceptibility to type 1 diabetes with different onset ages, in addition to the well-established effects of HLA class II genes. Methods: A total of 361 patients with type 1 diabetes (192 patients with onset <18 years and 169 patients with onset ≥18 years) and 500 healthy control participants from China were enrolled and genotyped for the HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 genes using next-generation sequencing. Results: The susceptible DR3 (β = −0.09, p = 0.0009) and DR4-DQ8 (β = −0.13, p = 0.0059) haplotypes were negatively associated with onset age, while the protective DR11 (β = 0.21, p = 0.0314) and DR12 (β = 0.27, p < 0.0001) haplotypes were positively associated with onset age. After adjustment for linkage disequilibrium with DR-DQ haplotypes, A*11:01:01 was positively associated with onset age (β = 0.06, p = 0.0370), while the susceptible C*15:02:01 was negatively associated with onset age (β = −0.21, p = 0.0050). The unit for β was double square-root (fourth root) transformed years of change in onset age associated with per copy of the HLA haplotype/allele. In addition, B*46:01:01 was protective (OR 0.41, 0.46; pc [corrected for multiple comparisons] = 0.0044, 0.0040), whereas A*24:02:01 (OR 2.71, 2.25; pc = 0.0003, 0.0002) and B*54:01:01 (OR 3.96, 3.79; pc = 0.0018, 0.0004) were predisposing in both the <18 group and the ≥18 group compared with healthy control participants. In the context of DR4-DQ4, A*11:01:01 (61.29% vs 28.26%, pc = 0.0144) was increased while the predisposing A*24:02:01 (19.35% vs 47.83%, pc = 0.0403) was decreased in patients with onset ≥18 years when compared with patients with onset <18 years. Conclusions/interpretation: In addition to DR-DQ haplotypes, novel HLA class I alleles were detected to play a role in susceptibility to type 1 diabetes with different onset ages, which could improve the understanding of disease heterogeneity and has implications for the design of future studies. Graphical abstract: [Figure not available: see fulltext.].
  •  
7.
  • Ren, Wenqian, et al. (författare)
  • Adult-onset type 1 diabetic patients with less severe clinical manifestation have less risk DR-DQ genotypes than childhood-onset patients
  • 2021
  • Ingår i: Diabetes/Metabolism Research and Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 37:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this study was to investigate differences in clinical features and HLA genotypes between adult-onset and childhood-onset patients with type 1 diabetes in a Chinese population. Materials and Methods: This study enrolled 716 Han Chinese patients with type 1 diabetes from Guangdong (258 childhood-onset and 458 adult-onset) to compare their clinical features. Of them 214 patients with classical type 1 diabetes (100 childhood-onset and 114 adult-onset) were selected for HLA DR and DQ genotyping by next-generation sequencing. Results: Adult-onset patients were characterized by longer duration of symptoms before diagnosis, lower frequency of DKA at disease onset, less frequent autoantibody positivity, higher serum C-peptide concentrations, and better glycemic control. These findings were replicated in the restricted cohort of 214 patients with classical type 1 diabetes. Compared with childhood-onset patients, adult-onset patients had a lower frequency of the DR9 haplotype, as well as lower frequency of high-risk DR3/DR4 and DR3/DR9 genotypes, but higher frequency of DR3/DR3 genotype and DR3/X, DR4/X or DR9/X (X, non-risk) genotypes. Conclusions: Adult-onset type 1 diabetic patients with susceptible haplotypes (DR3, DR4 or DR9) were more likely to carry protective DR-DQ haplotypes than childhood-onset patients, which suggested the association between less risk DR-DQ genotypes and the less severe clinical manifestation in adult-onset patients.
  •  
8.
  • Varney, Michael D., et al. (författare)
  • HLA DPA1, DPB1 Alleles and Haplotypes Contribute to the Risk Associated With Type 1 Diabetes Analysis of the Type 1 Diabetes Genetics Consortium Families
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:8, s. 2055-2062
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To determine the relative risk associated with DPA1 and DPB1 alleles and haplotypes in type I diabetes. RESEARCH DESIGN AND METHODS-The frequency of DPA1 and DPB1 alleles and haplotypes in type I diabetic patients was compared to the family based control frequency in 1,771 families directly and conditional on FILA (B)-DRB1-DQA1-DQB1 linkage disequilibrium. A relative predispositional analysis (RPA) was performed in the presence or absence of the primary HLA DR-DQ associations and the contribution of DP haplotype to individual DR-DQ haplotype risks examined. RESULTS-Eight DPAI and thirty-eight DPB1 alleles forming seventy-four DPA1-DPB1 haplotypes were observed, nineteen DPB1 alleles were associated with multiple DPA1 alleles Following both analyses, type I diabetes susceptibility was significantly associated with DPB1*0301 (DPA1*0103-DPB1*0301) and protection with DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 but not DPA1*0201-DPB1*0101. In addition, DPB1*0202 (DPA1*0103-DPB1*0202) and DPB1*0201 (DPA1*0103-DPB1*0201) were significantly associated with susceptibility in the presence of the high risk and protective DR-DQ haplotypes Three associations (DPB1*0301, *0402, and *0202) remained statistically significant when only the extended HLA-A1-B8-DR3 haplotype was considered, suggesting that DPB1 alone may delineate the risk associated with this otherwise conserved haplotype CONCLUSIONS-HLA DP allelic and haplotypic diversity contributes significantly to the risk for type I diabetes; DPB1*0301 (DPA1*0103-DPB1*0301) is associated with susceptibility and DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 with protection Additional evidence is presented for the susceptibility association of DPB1*0202 (DPA1*0103-DPB1*0202) and for a contributory role of individual amino acids and DPA1 or a gene in linkage disequilibrium in DR3-DPB1*0101 positive haplotypes Diabetes 59:2055-2062, 2010
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy