SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noguer Oriol) "

Sökning: WFRF:(Noguer Oriol)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Roche, Francis P., et al. (författare)
  • Leukocyte differentiation by histidine-rich glycoprotein/stanniocalcin-2 complex regulates murine glioma growth through modulation of anti-tumor immunity
  • 2018
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 17:9, s. 1961-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma-protein histidine-rich glycoprotein (HRG) is implicated in phenotypic switching of tumor-associated macrophages, regulating cytokine production and phagocytotic activity, thereby promoting vessel normalization and anti-tumor immune responses. To assess the therapeutic effect of HRG gene delivery on CNS tumors, we used adenovirus-encoded HRG to treat mouse intracranial GL261 glioma. Delivery of Ad5-HRG to the tumor site resulted in a significant reduction in glioma growth, associated with increased vessel perfusion and increased CD45+ leukocyte and CD8+ T cell accumulation in the tumor. Antibody-mediated neutralization of colony-stimulating factor-1 suppressed the effects of HRG on CD45+ and CD8+ infiltration. Using a novel protein interaction-decoding technology, TRICEPS-based ligand receptor capture (LRC), we identified Stanniocalcin-2 (STC2) as an interacting partner of HRG on the surface of inflammatory cells in vitro and co-localization of HRG and STC2 in gliomas. HRG reduced the suppressive effects of STC2 on monocyte CD14+ differentiation and STC2-regulated immune response pathways. In consequence, Ad5-HRG treated gliomas displayed decreased numbers of Interleukin-35+ Treg cells, providing a mechanistic rationale for the reduction in GL261 growth in response to Ad5-HRG delivery. We conclude that HRG suppresses glioma growth by modulating tumor inflammation through monocyte infiltration and differentiation. Moreover, HRG acts to balance the regulatory effects of its partner, STC2, on inflammation and innate and/or acquired immunity. HRG gene delivery therefore offers a potential therapeutic strategy to control anti-tumor immunity.
  •  
3.
  • Tugues, Sònia, et al. (författare)
  • Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization
  • 2012
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445.
  • Tidskriftsartikel (refereegranskat)abstract
    • Histidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein implicated in the regulation of tumor growth and vascularization. In this study, we show that hrg-/- mice challenged with fibrosarcoma or pancreatic carcinomas grow larger tumors with increased metastatic properties. Compared with wild type mice, fibrosarcomas in hrg-/- mice were more hypoxic, necrotic and less perfused, indicating enhanced vessel abnormalization. HRG-deficiency was associated with a suppressed anti-tumor immune response, with both increased infiltration of M2-marker-expressing macrophages and decreased infiltration of dendritic cells and cytotoxic T cells. Analysis of transcript expression in tumor-associated as well as peritoneal macrophages from hrg-/- mice revealed an increased expression of genes associated with a pro-angiogenic and immunoinhibitory phenotype. In accordance, expression arrays performed on HRG-treated peritoneal macrophages showed induction of genes involved in extracellular matrix biology and immune responsiveness. In conclusion, our findings demonstrate that macrophages are a direct target of HRG. HRG loss influences macrophage gene regulation, leading to excess stimulation of tumor angiogenesis, suppression of tumor immune response, and increased tumor growth and metastatic spread.
  •  
4.
  • Tugues, Sònia, et al. (författare)
  • Histidine-Rich Glycoprotein Uptake and Turnover Is Mediated by Mononuclear Phagocytes.
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:9, s. e107483-
  • Tidskriftsartikel (refereegranskat)abstract
    • Histidine-rich glycoprotein (HRG) is implicated in tumor growth and metastasis by regulation of angiogenesis and inflammation. HRG is produced by hepatocytes and carried to tissues via the circulation. We hypothesized that HRG's tissue distribution and turnover may be mediated by inflammatory cells. Biodistribution parameters were analyzed by injection of radiolabeled, bioactive HRG in the circulation of healthy and tumor-bearing mice. 125I-HRG was cleared rapidly from the blood and taken up in tissues of healthy and tumor-bearing mice, followed by degradation, to an increased extent in the tumor-bearing mice. Steady state levels of HRG in the circulation were unaffected by the tumor disease both in murine tumor models and in colorectal cancer (CRC) patients. Importantly, stromal pools of HRG, detected in human CRC microarrays, were associated with inflammatory cells. In agreement, microautoradiography identified 125I-HRG in blood vessels and on CD45-positive leukocytes in mouse tissues. Moreover, radiolabeled HRG bound in a specific, heparan sulfate-independent manner, to differentiated human monocytic U937 cells in vitro. Suppression of monocyte differentiation by systemic treatment of mice with anti-colony stimulating factor-1 neutralizing antibodies led to reduced blood clearance of radiolabeled HRG and to accumulation of endogenous HRG in the blood. Combined, our data show that mononuclear phagocytes have specific binding sites for HRG and that these cells are essential for uptake of HRG from blood and distribution of HRG in tissues. Thereby, we confirm and extend our previous report that inflammatory cells mediate the effect of HRG on tumor growth and metastatic spread.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy