SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noguera Rosa) "

Sökning: WFRF:(Noguera Rosa)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Ambros, Inge M, et al. (författare)
  • A multilocus technique for risk evaluation of patients with neuroblastoma.
  • 2011
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432. ; 17:4, s. 792-804
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise and comprehensive analysis of neuroblastoma genetics is essential for accurate risk evaluation and only pangenomic/multilocus approaches fulfill the present-day requirements. We present the establishment and validation of the PCR-based multiplex ligation-dependent probe amplification (MLPA) technique for neuroblastoma.
  •  
4.
  • Braekeveldt, Noémie, et al. (författare)
  • Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours
  • 2016
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 375:2, s. 384-389
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of high-risk childhood neuroblastoma is a clinical challenge hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing.
  •  
5.
  • Braekeveldt, Noémie, et al. (författare)
  • Neuroblastoma Patient-Derived Orthotopic Xenografts Retain Metastatic Patterns and Geno- and Phenotypes of Patient Tumours.
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 136:5, s. 252-261
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient-derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose - positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers NCAM, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p, and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high-risk neuroblastoma in patients. PDX-derived cells were cultured in serum-free medium where they formed free-floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour-initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK-N-BE(2)c cell line-derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high-risk metastatic neuroblastoma. © 2014 Wiley Periodicals, Inc.
  •  
6.
  • Braekeveldt, Noémie, et al. (författare)
  • Patient-derived xenograft models reveal intratumor heterogeneity and temporal stability in neuroblastoma
  • 2018
  • Ingår i: Cancer Research. - 0008-5472. ; 78:20, s. 5958-5969
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain underexplored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research.
  •  
7.
  • De Brouwer, Sara, et al. (författare)
  • Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification.
  • 2010
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432 .- 1557-3265. ; 16:17, s. 4353-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression.
  •  
8.
  •  
9.
  • Fransson, Susanne, 1975, et al. (författare)
  • Intragenic anaplastic lymphoma kinase (ALK) rearrangements: Translocations as a novel mechanism of ALK activation in neuroblastoma tumors.
  • 2015
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 54:2, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray. Gain of 2p was detected in 23% (60/332) of primary tumors and 46% (6/13) of cell lines, while breakpoints at the ALK locus were detected in four primary tumors and two cell lines. These were further analyzed by next generation sequencing and a targeted enrichment approach. Samples with both ALK and MYCN amplification displayed complex genomic rearrangements with multiple breakpoints within the amplicon. None of the translocations characterized in primary NB tumors are likely to result in a chimeric protein. However, immunohistochemical analysis reveals high levels of phosphorylated ALK in these samples despite lack of initial exons, possibly due to alternative transcription initiation sites. Both ALK proteins predicted to arise from such alterations and from the abnormal ALK exon 4-11 deletion observed in the CLB-BAR cell line show strong activation of downstream targets STAT3 and extracellular signal-regulated kinase (ERK) when expressed in PC12 cells. Taken together, our data indicate a novel, although rare, mechanism of ALK activation with implications for NB tumorigenesis.
  •  
10.
  • Fredlund, Elina, et al. (författare)
  • MOXD1 is a lineage-specific gene and a tumor suppressor in neuroblastoma
  • 2024
  • Ingår i: Science Advances. - 2375-2548. ; 10:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest–enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.
  •  
11.
  •  
12.
  • Lundberg, Gisela, et al. (författare)
  • Alternative lengthening of telomeres--an enhanced chromosomal instability in aggressive non-MYCN amplified and telomere elongated neuroblastomas.
  • 2011
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 50:4, s. 250-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomere length alterations are known to cause genomic instability and influence clinical course in several tumor types, but have been little investigated in neuroblastoma (NB), one of the most common childhood tumors. In the present study, telomere-dependent chromosomal instability and telomere length were determined in six NB cell lines and fifty tumor biopsies. The alternative lengthening of telomeres (ALT) pathway was assayed by scoring ALT-associated promyelocytic leukemia (PML) bodies (APBs). We found a reduced probability of overall survival for tumors with increased telomere length compared to cases with reduced or unchanged telomere length. In non-MYCN amplified tumors, a reduced or unchanged telomere length was associated with 100% overall survival. Tumor cells with increased telomere length had an elevated frequency of APBs, consistent with activation of the ALT pathway. The vast majority of tumor biopsies and cell lines exhibited an elevated rate of anaphase bridges, suggesting telomere-dependent chromosomal instability. This was more pronounced in tumors with increased telomere length. In cell lines, there was a close correlation between lack of telomere-protective TTAGGG-repeats, anaphase bridging, and remodeling of oncogene sequences. Thus, telomere-dependent chromosomal instability is highly prevalent in NB, and may contribute to the complexity of genomic alterations as well as therapy resistance in the absence of MYCN amplification and in this tumor type.
  •  
13.
  • Löfstedt, Tobias, et al. (författare)
  • HIF-1alpha induces MXI1 by alternate promoter usage in human neuroblastoma cells.
  • 2009
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 315:11, s. 1924-1936
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation to low oxygen conditions is essential for maintaining homeostasis and viability in oxygen-consuming multi-cellular tissues, including solid tumors. Central in these processes are the hypoxia-inducible transcription factors, HIF-1 and HIF-2, controlling genes involved in e.g. glucose metabolism and neovascularization. Tumor hypoxia and HIF expression have also been associated with a dedifferentiated phenotype and increased aggressiveness. In this report we show that the MAX interactor-1 (MXI1) gene is directly regulated by HIF proteins in neuroblastoma and breast cancer cells. HIF-binding and transactivation were detected within MXI1 gene regulatory sequences in the vicinity of the MXI1-0 promoter, leading to rapid induction of the alternate MXI1-0 isoform followed by a long-term induction of both the MXI1-0 and MXI1 isoforms. Importantly, knock-down of MXI1 had limited effect on MYC/MYCN activity under hypoxia, an observation that might be related to the different functional attributes of the two MXI1 isoforms.
  •  
14.
  • Noguera, Rosa, et al. (författare)
  • HIF-1{alpha} and HIF-2{alpha} Are Differentially Regulated In vivo in Neuroblastoma: High HIF-1{alpha} Correlates Negatively to Advanced Clinical Stage and Tumor Vascularization.
  • 2009
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 15:23, s. 7130-7136
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Hypoxia is considered to be a major driving force behind tumor angiogenesis. The stabilization and activation at hypoxia of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha and the concomitant induction of expression of vascular endothelial growth factor (VEGF) and other proangiogenic factors provide a molecular frame for hypoxia-driven tumor angiogenesis. This study has investigated how HIF and VEGF protein levels relate to each other with regard to vascularization, tumor stage, and overall survival in neuroblastoma. EXPERIMENTAL DESIGN: Tissue cores taken from tumor specimens representing 93 children with neuroblastoma were arranged on a microarray and stained for HIF-1alpha, HIF-2alpha, VEGF, and CD31 proteins. Both fraction of positive cells and staining intensity were evaluated and protein levels were correlated with each other and with clinical variables. RESULTS: Although high levels of both HIF-1alpha (P < 0.001) and HIF-2alpha (P < 0.001) correlated positively to VEGF expression, they did not fully correlate with each other. Moreover, HIF-1alpha (P = 0.002) and VEGF (P < 0.001), but not HIF-2alpha, correlated negatively to vascularization as determined by CD31 staining abundance. VEGF expression or degree of vascularization did not correlate with tumor stage or overall survival. High HIF-1alpha levels correlated with low tumor stage (P < 0.001) and were associated with a favorable patient prognosis (P = 0.08). CONCLUSIONS: The discordant results on expression of HIF-1alpha and HIF-2alpha suggest that these two proteins are differentially regulated in vivo, thus reflecting distinctive protein expression/stabilization mechanisms. The association between HIF-1alpha and favorable outcome stresses the importance of discriminating HIF-2alpha from HIF-1alpha expression and has implications for using HIFs as treatment targets. (Clin Cancer Res 2009;15(23):OF1-7).
  •  
15.
  • Pietras, Alexander, et al. (författare)
  • HIF-2 alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106:39, s. 16805-16810
  • Tidskriftsartikel (refereegranskat)abstract
    • High hypoxia-inducible factor-2 alpha (HIF-2 alpha) protein levels predict poor outcome in neuroblastoma, and hypoxia dedifferentiates cultured neuroblastoma cells toward a neural crest-like phenotype. Here, we identify HIF-2 alpha as a marker of normoxic neural crest-like neuroblastoma tumor-initiating/stem cells (TICs) isolated from patient bone marrows. Knockdown of HIF-2 alpha reduced VEGF expression and induced partial sympathetic neuronal differentiation when these TICs were grown in vitro under stem cell-promoting conditions. Xenograft tumors of HIF-2 alpha-silenced cells were widely necrotic, poorly vascularized, and resembled the bulk of tumor cells in clinical neuroblastomas by expressing additional sympathetic neuronal markers, whereas control tumors were immature, well-vascularized, and stroma-rich. Thus, HIF-2 alpha maintains an undifferentiated state of neuroblastoma TICs. Because low differentiation is associated with poor outcome and angiogenesis is crucial for tumor growth, HIF-2 alpha is an attractive target for neuroblastoma therapy.
  •  
16.
  • Tadeo, Irene, et al. (författare)
  • Extracellular matrix composition defines an ultra-high-risk group of neuroblastoma within the high-risk patient cohort
  • 2016
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 115:4, s. 480-489
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Although survival for neuroblastoma patients has dramatically improved in recent years, a substantial number of children in the high-risk subgroup still die.Methods:We aimed to define a subgroup of ultra-high-risk patients from within the high-risk cohort. We used advanced morphometric approaches to quantify and characterise blood vessels, reticulin fibre networks, collagen type I bundles, elastic fibres and glycosaminoglycans in 102 high-risk neuroblastomas specimens. The Kaplan-Meier method was used to correlate the analysed elements with survival.Results:The organisation of blood vessels and reticulin fibres in neuroblastic tumours defined an ultra-high-risk patient subgroup with 5-year survival rate <15%. Specifically, tumours with irregularly shaped blood vessels, large sinusoid-like vessels, smaller and tortuous venules and arterioles and with large areas of reticulin fibres forming large, crosslinking, branching and haphazardly arranged networks were linked to the ultra-high-risk phenotype.Conclusions:We demonstrate that quantification of tumour stroma components by morphometric techniques has the potential to improve risk stratification of neuroblastoma patients.
  •  
17.
  • von Stedingk, Kristoffer, et al. (författare)
  • Individual patient risk stratification of high-risk neuroblastomas using a two-gene score suited for clinical use.
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136. ; 137:4, s. 868-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Several gene expression-based prognostic signatures have been described in neuroblastoma, but none have successfully been applied in the clinic. Here we have developed a clinically applicable prognostic gene signature, both with regards to number of genes and analysis platform. Importantly, it does not require comparison between patients and is applicable amongst high-risk patients. The signature is based on a two-gene score (R-score) with prognostic power in high-stage tumours (stage 4 and/or MYCN-amplified diagnosed after 18 months of age). QPCR-based and array-based analyses of matched cDNAs confirmed cross platform (array-qPCR) transferability. We also defined a fixed cut-off value identifying prognostically differing subsets of high-risk patients on an individual patient basis. This gene expression signature independently contributes to the current neuroblastoma classification system, and if prospectively validated could provide further stratification of high-risk patients, and potential upfront identification of a group of patients that are in need of new/additional treatment regimens.
  •  
18.
  • von Stedingk, Kristoffer, et al. (författare)
  • snoRNPs Regulate Telomerase Activity in Neuroblastoma and Are Associated with Poor Prognosis.
  • 2013
  • Ingår i: Translational Oncology. - : Elsevier BV. - 1936-5233. ; 6:4, s. 447-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of the MYCN oncogene is strongly associated with poor prognosis in neuroblastoma (NB). In addition to MYCN amplification, many studies have focused on identifying patients with a poor prognosis based on gene expression profiling. The majority of prognostic signatures today are comprised of large gene lists limiting their clinical application. In addition, although of prognostic significance, most of these signatures fail to identify cellular processes that can explain their relation to prognosis. Here, we determined prognostically predictive genes in a data set containing 251 NBs. Gene Ontology analysis was performed on significant genes with a positive hazard ratio to search for cellular processes associated with poor prognosis. An enrichment in ribonucleoproteins (RNPs) was found. Genes involved in the stabilization and formation of the central small nucleolar RNP (snoRNP) complex were scrutinized using a backward conditional Cox regression resulting in an snoRNP signature consisting of three genes: DKC1, NHP2, and GAR1. The snoRNP signature significantly and independently predicted prognosis when compared to the established clinical risk factors. Association of snoRNP protein expression and prognosis was confirmed using tissue micro-arrays. Knockdown of snoRNP expression in NB cell lines resulted in reduced telomerase activity and an increase in anaphase bridge frequency. In addition, in patient material, expression of the snoRNP complex was significantly associated with telomerase activity, occurrence of segmental aberrations, and expression-based measurements of chromosomal instability. Together, these results underscore the prognostic value of snoRNP complex expression in NB and suggest a role for snoRNPs in telomere maintenance and genomic stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy