SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nolan Emma) "

Sökning: WFRF:(Nolan Emma)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Burnum-Johnson, Kristin E., et al. (författare)
  • New Views of Old Proteins : Clarifying the Enigmatic Proteome
  • 2022
  • Ingår i: Molecular & Cellular Proteomics. - : Elsevier BV. - 1535-9476 .- 1535-9484. ; 21:7
  • Tidskriftsartikel (refereegranskat)abstract
    • All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
  •  
6.
  • Farrell, Edward D. D., et al. (författare)
  • A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c
  • 2022
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.
  •  
7.
  • Hickey, J. W., et al. (författare)
  • Spatial mapping of protein composition and tissue organization : a primer for multiplexed antibody-based imaging
  • 2022
  • Ingår i: Nature Methods. - : Nature Research. - 1548-7091 .- 1548-7105. ; 19:3, s. 284-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers.
  •  
8.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
9.
  • Regev, A, et al. (författare)
  • The Human Cell Atlas
  • 2017
  • Ingår i: eLife. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Rozenblatt-Rosen, O., et al. (författare)
  • Building a high-quality Human Cell Atlas
  • 2021
  • Ingår i: Nature Biotechnology. - : Nature Research. - 1087-0156 .- 1546-1696. ; 39:2, s. 149-153
  • Tidskriftsartikel (refereegranskat)
  •  
11.
  • Winfree, Rebecca L., et al. (författare)
  • Variants in the MS4A cluster interact with soluble TREM2 expression on biomarkers of neuropathology
  • 2024
  • Ingår i: MOLECULAR NEURODEGENERATION. - 1750-1326. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher A beta(40), worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 +/- 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 +/- 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 +/- 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and A beta(40) (beta = -0.44, p-value = 0.017) and replicated this interaction in ADNI (beta = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and A beta peptides in brain (A beta total beta = -0.14, p = 0.629; A beta(1-38), beta = 0.11, p = 0.200). In contrast to the effects on A beta, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (beta = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on A beta levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy