SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordling Sofia 1985 ) "

Sökning: WFRF:(Nordling Sofia 1985 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bongoni, Anjan K., et al. (författare)
  • Surface modification of pig endothelial cells with a branched heparin conjugate improves their compatibility with human blood
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Corline Heparin Conjugate (CHC), a compound of multiple unfractionated heparin chains, coats cells with a glycocalyx-like layer and may inhibit (xeno) transplant-associated activation of the plasma cascade systems. Here, we investigated the use of CHC to protect WT and genetically modified (GTKO. hCD46. hTBM) pig aortic endothelial cells (PAEC) in two pig-to-human in vitro xenotransplantation settings. Model 1: incubation of untreated or hTNFa-treated PAEC with 10% human plasma induced complement C3b/c and C5b-9 deposition, cellular activation and coagulation activation in WT and GTKO. hCD46. hTBM PAEC. Coating of untreated or hTNFa-treated PAEC with CHC (100 mu g/ml) protected against human plasma-induced endothelial activation and damage. Model 2: PAEC were grown on microcarrier beads, coated with CHC, and incubated with non-anticoagulated whole human blood. Genetically modified PAEC significantly prolonged clotting time of human blood (115.0 +/- 16.1 min, p < 0.001) compared to WT PAEC (34.0 +/- 8.2 min). Surface CHC significantly improved the human blood compatibility of PAEC, as shown by increased clotting time (WT: 84.3 +/- 11.3 min, p < 0.001; GTKO. hCD46. hTBM: 146.2 +/- 20.4 min, p < 0.05) and reduced platelet adhesion, complement activation, coagulation activation and inhibition of fibrinolysis. The combination of CHC coating and genetic modification provided the greatest compatibility with human blood, suggesting that pre-transplant perfusion of genetically modified porcine organs with CHC may benefit post-transplant xenograft function.
  •  
2.
  • Jin, Yi, et al. (författare)
  • Tyrosine-protein kinase Yes controls endothelial junctional plasticity and barrier integrity by regulating VE-cadherin phosphorylation and endocytosis
  • 2022
  • Ingår i: Nature Cardiovascular Research. - : Springer Nature. - 2731-0590. ; 1:12, s. 1156-1173
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src deficiency, VE-cadherin internalization is maintained and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.
  •  
3.
  • Mäe, Maarja Andaloussi, et al. (författare)
  • Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss
  • 2021
  • Ingår i: Circulation Research. - : Lippincott Williams & Wilkins. - 0009-7330 .- 1524-4571. ; 128:4, s. E46-E62
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive.Objective: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype.Methods and Results: We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfb(ret/ret) mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfb(ret/ret) brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB.Conclusions: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.
  •  
4.
  • Nordling, Sofia, 1985-, et al. (författare)
  • Enhanced protection of the renal vascular endothelium improves early outcome in kidney transplantation : Preclinical investigations in pig and mouse
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemia reperfusion injury is one of the major complications responsible for delayed graft function in kidney transplantation. Applications to reduce reperfusion injury are essential due to the widespread use of kidneys from deceased organ donors where the risk for delayed graft function is especially prominent. We have recently shown that coating of inflamed or damaged endothelial cells with a unique heparin conjugate reduces thrombosis and leukocyte recruitment. In this study we evaluated the binding capacity of the heparin conjugate to cultured human endothelial cells, to kidneys from brain-dead porcine donors, and to murine kidneys during static cold storage. The heparin conjugate was able to stably bind cultured endothelial cells with high avidity, and to the renal vasculature of explanted kidneys from pigs and mice. Treatment of murine kidneys prior to transplantation reduced platelet deposition and leukocyte infiltration 24 hours post-transplantation, and significantly improved graft function. The present study thus shows the benefits of enhanced protection of the renal vasculature during cold storage, whereby increasing the antithrombotic and anti-adhesive properties of the vascular endothelium yields improved renal function early after transplantation.
  •  
5.
  • Nordling, Sofia, 1985- (författare)
  • Vascular Interactions in Innate Immunity and Immunothrombosis: : Models of Endothelial Protection
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The phenomenon known as immunothrombosis has garnered increased attention over the last few years. Much work has been done to characterize the cross talk between hemostasis and the innate immune system. This thesis outlines the role of the vascular endothelial cells during immunothrombotic events as regulators of coagulation, platelet-, and leukocyte recruitment.A newly developed method for investigating the interaction between endothelial cells and the blood compartment illustrated the procoagulant and proinflammatory effects elicited by tumor necrosis factor α activated endothelial cells upon exposure to whole blood. The method was utilized in evaluating treatment of endothelial dysfunction and disruption with a heparin conjugate. Damaged or hypoxic endothelial cells, in addition to basement membrane collagen, that were pretreated with the heparin conjugate prior to contact with blood were found to have reduced activation of coagulation, platelet-, and leukocyte recruitment; in contrast to unfractionated heparin, which had no effect on the aforementioned parameters. The treatment was then investigated in the setting of ischemia reperfusion injury during kidney transplantation and the heparin conjugate was found to bind cultured endothelial cells with high avidity under cold storage conditions. Furthermore, it was found to bind to the renal vasculature during static cold storage and was subsequently found to be beneficial with regard to early graft function in an experimental mouse model of syngeneic kidney transplantation. Recipients of kidneys treated with the heparin conjugate had reduced serum creatinine compared to controls 24 hours after transplantation. Lastly, the anticoagulant properties of the heparin conjugate were investigated in comparison to unfractionated heparin. While the conjugate exerted reduced capacity with regard to thrombin inhibition, it rapidly inhibited the binding of platelets to exposed collagen. The conjugate was furthermore found to preferentially locate to sites of endothelial cell activation at early stage during endotoxic shock in mice.In conclusion, this thesis demonstrates that disrupted functioning of the vascular endothelial cells actively contributes to immunothrombosis, and that it is possible to model endothelial cell function using whole blood assays. Furthermore, this thesis presents a treatment that enhances the hemocompatibility of damaged endothelial cells and subsequently improves the early renal function after kidney transplantation.
  •  
6.
  • Richards, Mark, et al. (författare)
  • Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysfunctional and leaky blood vessels resulting from disruption of the endothelial cell (EC) barrier accompanies numerous diseases. The EC barrier is established through endothelial cell tight and adherens junctions. However, the expression pattern and precise contribution of different junctional proteins to the EC barrier is poorly understood. Here, we focus on organs with continuous endothelium to identify structural and functional in vivo characteristics of the EC barrier. Assembly of multiple single-cell RNAseq datasets into a single integrated database revealed the variability and commonalities of EC barrier patterning. Across tissues, Claudin5 exhibited diminishing expression along the arteriovenous axis, correlating with EC barrier integrity. Functional analysis identified tissue-specific differences in leakage properties and response to the leakage agonist histamine. Loss of Claudin5 enhanced histamine-induced leakage in an organotypic and vessel type-specific manner in an inducible, EC-specific, knock-out mouse. Mechanistically, Claudin5 loss left junction ultrastructure unaffected but altered its composition, with concomitant loss of zonula occludens-1 and upregulation of VE-Cadherin expression. These findings uncover the organ-specific organisation of the EC barrier and distinct importance of Claudin5 in different vascular beds, providing insights to modify EC barrier stability in a targeted, organ-specific manner.
  •  
7.
  • Sainz-Jaspeado, Miguel, et al. (författare)
  • Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium
  • 2021
  • Ingår i: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 144:20, s. 1629-1645
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease.Methods: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes.Results: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd(-/-) mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs.Conclusions: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.
  •  
8.
  • Sedigh, Amir, et al. (författare)
  • Perfusion of Porcine Kidneys With Macromolecular Heparin Reduces Early Ischemia Reperfusion Injury
  • 2019
  • Ingår i: Transplantation. - : LIPPINCOTT WILLIAMS & WILKINS. - 0041-1337 .- 1534-6080. ; 103:2, s. 420-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previously, we have been able to demonstrate the possibility of coating the inner surface of the renal arteries in porcine kidneys with a heparin conjugate during hypothermic machine perfusion (HMP). The purpose of this study was to assess the efficacy of this treatment in reducing early ischemia-reperfusion injury.Method: Brain death was induced in male landrace pigs by stepwise volume expansion of an epidural balloon catheter until negative cerebral perfusion pressure (CPP) was obtained. Both kidneys (matched pairs; n = 6 + 6) were preserved for 20 hours byHMP during which 50mg heparin conjugate was added to one of the HMP systems (treated group). A customized ex vivo normothermic oxygenated perfusion (NP) system with added exogenous creatinine was used to evaluate early kidney function. Blood, urine and histological samples were collected during the subsequent 3 hours of NP.Results: Kidney weight was lower at the end of NP (P = 0.017) in the treated group compared with control kidneys. The rate of decline in creatinine level was faster (P = 0.024), total urinary volume was higher (P = 0.031), and the level of urine neutrophil gelatinase-associated lipocalin (NGAL) was lower (P = 0.031) in the treated group. Histologically, less tubular changes were seen (P = 0.046). During NP intrarenal resistance remained lower (P < 0.0001) in the treated group.Conclusions: Perfusion of porcine kidneys with heparin conjugate during HMP reduces preservation injury and improves organ function shortly after reperfusion. No increased risk of bleeding was seen in this setup. This protective strategy may potentially improve the quality of transplanted kidneys in the clinical setting.
  •  
9.
  • Stancic, Brina, et al. (författare)
  • The blood endothelial cell chamber : an innovative system to study immune responses in drug development
  • 2021
  • Ingår i: International Journal of Immunopharmacology. - : Elsevier BV. - 0192-0561 .- 1879-3495. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk for adverse immune-mediated reactions, associated with the administration of certain immunotherapeutic agents, should be mitigated early. Infusion reactions to monoclonal antibodies and other biopharmaceuticals, known as cytokine release syndrome, can arise from the release of cytokines via the drug target cell, as well as the recruitment of immune effector cells. While several in vitro cytokine release assays have been proposed up to date, many of them lack important blood components, required for this response to occur. The blood endothelial cell chamber model is an in vitro assay, composed of freshly drawn human whole blood and cultured human primary endothelial cells. Herein, its potential to study the compatibility of immunotherapeutics with the human immune system was studied by evaluating three commercially available monoclonal antibodies and bacterial endotoxin lipopolysaccharide. We demonstrate that the anti-CD28 antibody TGN1412 displayed an adaptive cytokine release profile and a distinct IL-2 response, accompanied with increased CD3+ cell recruitment. Alemtuzumab exhibited a clear cytokine response with a mixed adaptive/innate source (IFNγ, TNFα and IL-6). Its immunosuppressive nature is observed in depleted CD3+ cells. Cetuximab, associated with low infusion reactions, showed a very low or absent stimulatory effect on proinflammatory cytokines. In contrast, bacterial endotoxin demonstrated a clear innate cytokine response, defined by TNFα, IL-6 and IL-1β release, accompanied with a strong recruitment of CD14+CD16+ cells. Therefore, the blood endothelial cell chamber model is presented as a valuable in vitro tool to investigate therapeutic monoclonal antibodies with respect to cytokine release and vascular immune cell recruitment. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nordling, Sofia, 198 ... (9)
Claesson-Welsh, Lena (3)
Magnusson, Peetra (3)
Jin, Yi (2)
Betsholtz, Christer (2)
Carlsson, Fredrik (2)
visa fler...
Lorant, Tomas, 1975- (2)
Salvaris, Evelyn (2)
Cowan, Peter J. (2)
Lennmyr, Fredrik, 19 ... (1)
Aspenström, Pontus (1)
Tolmachev, Vladimir (1)
Larsson, Erik (1)
Cazenave-Gassiot, Am ... (1)
Rosa, André (1)
Franco-Cereceda, And ... (1)
Tufveson, Gunnar (1)
Wanders, Alkwin (1)
Vanlandewijck, Micha ... (1)
Gloger, Marleen (1)
Koltowska, Katarzyna (1)
Vázquez-Liébanas, El ... (1)
He, Liqun (1)
Nahar, Khayrun (1)
Zarb, Yvette (1)
Keller, Annika (1)
Daniel, Geoffrey (1)
Fernando, Dinesh (1)
Sedigh, Amir (1)
Estrada, Sergio (1)
Petrova, Tatiana V. (1)
Kilimann, Manfred W. (1)
Plunde, Oscar (1)
Magnusson, Peetra U. (1)
Lubenow, Norbert, Do ... (1)
Butcher, Eugene C. (1)
Buijs, Jos (1)
Jeansson, Marie (1)
Quaggin, Susan E. (1)
Vestweber, Dietmar (1)
Szymborska, Anna (1)
Gerhardt, Holger (1)
Berglund, Magnus M. (1)
Bongoni, Anjan K. (1)
Klymiuk, Nikolai (1)
Wolf, Eckhard (1)
Ayares, David L. (1)
Rieben, Robert (1)
Wenk, Markus R. (1)
Brenden, Nina (1)
visa färre...
Lärosäte
Uppsala universitet (9)
Karolinska Institutet (3)
Umeå universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy