SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordlund Jessica) "

Sökning: WFRF:(Nordlund Jessica)

  • Resultat 1-50 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loza, M. J., et al. (författare)
  • Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
  • 2016
  • Ingår i: Respiratory Research. - : Springer Nature. - 1465-9921 .- 1465-993X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Methods: Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Results: Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Conclusions: Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. Trial registration:NCT01274507(ADEPT), registered October 28, 2010 and NCT01982162(U-BIOPRED), registered October 30, 2013.
  •  
2.
  • Almeida, Pedro, et al. (författare)
  • Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion
  • 2020
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear.ResultsHere, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes.ConclusionsOur data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.
  •  
3.
  • Alvez, Maria Bueno, et al. (författare)
  • Next generation pan-cancer blood proteome profiling using proximity extension assay
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
  •  
4.
  • Ameur, Adam, et al. (författare)
  • De Novo Assembly of Two Swedish Genomes Reveals Missing Segments from the Human GRCh38 Reference and Improves Variant Calling of Population-Scale Sequencing Data
  • 2018
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.
  •  
5.
  • Arvidsson, Gustav, et al. (författare)
  • Multimodal Single-Cell Sequencing of B Cells in Primary Sjögren's Syndrome
  • 2024
  • Ingår i: Arthritis & Rheumatology. - 2326-5191 .- 2326-5205. ; 76:2, s. 255-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. B cells are important in the pathogenesis of primary Sjögren's syndrome (pSS). Patients positive for Sjögren's syndrome antigen A/Sjögren syndrome antigen B (SSA/SSB) autoantibodies are more prone to systemic disease manifestations and adverse outcomes. We aimed to determine the role of B cell composition, gene expression, and B cell receptor usage in pSS subgroups stratified for SSA/SSB antibodies.Methods. Over 230,000 B cells were isolated from peripheral blood of patients with pSS (n = 6 SSA−, n = 8 SSA+ single positive and n = 10 SSA/SSB+ double positive) and four healthy controls and processed for single-cell RNA sequencing (scRNA-seq) and single-cell variable, diversity, and joining (VDJ) gene sequencing (scVDJ-seq).Results. We show that SSA/SSB+ patients present the highest and lowest proportion of naïve and memory B cells, respectively, and the highest up-regulation of interferon-induced genes across all B cell subtypes. Differential usage of IGHV showed that IGHV1-69 and IGHV4-30-4 were more often used in all pSS subgroups compared with controls. Memory B cells from SSA/SSB+ patients displayed a higher proportion of cells with unmutated VDJ transcripts compared with other pSS patient groups and controls, indicating altered somatic hypermutation processes. Comparison with previous studies revealed heterogeneous clonotype pools, with little overlap in CDR3 sequences. Joint analysis using scRNA-seq and scVDJ-seq data allowed unsupervised stratification of patients with pSS and identified novel parameters that correlated to disease manifestations and antibody status.Conclusion. We describe heterogeneity and molecular characteristics in B cells from patients with pSS, providing clues to intrinsic differences in B cells that affect the phenotype and outcome and allowing stratification of patients with pSS at improved resolution.
  •  
6.
  • Berglund, Eva Caroline, et al. (författare)
  • A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias
  • 2022
  • Ingår i: Frontiers in Medicine. - Lausanne, Switzerland : Frontiers Media SA. - 2296-858X. ; 9, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS), with the ability to provide comprehensive genomic information, have become the focal point of research interest as novel techniques that can support precision diagnostics in routine clinical care of patients with various cancer types, including hematological malignancies. This national multi-center study, led by Genomic Medicine Sweden, aims to evaluate whether combined application of WGS and WTS (WGTS) is technically feasible and can be implemented as an efficient diagnostic tool in patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In addition to clinical impact assessment, a health-economic evaluation of such strategy will be performed. Methods and Analysis: The study comprises four phases (i.e., retrospective, prospective, real-time validation, and follow-up) including approximately 700 adult and pediatric Swedish AML and ALL patients. Results of WGS for tumor (90×) and normal/germline (30×) samples as well as WTS for tumors only will be compared to current standard of care diagnostics. Primary study endpoints are diagnostic efficiency and improved diagnostic yield. Secondary endpoints are technical and clinical feasibility for routine implementation, clinical utility, and health-economic impact. Discussion: Data from this national multi-center study will be used to evaluate clinical performance of the integrated WGTS diagnostic workflow compared with standard of care. The study will also elucidate clinical and health-economic impacts of a combined WGTS strategy when implemented in routine clinical care. Clinical Trial Registration: [https://doi.org/10.1186/ISRCTN66987142], identifier [ISRCTN66987142].
  •  
7.
  • Berglund, Eva C, et al. (författare)
  • Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using HaloPlex target enrichment
  • 2013
  • Ingår i: BMC Genomics. - : BioMed Central. - 1471-2164. ; 14, s. 856-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Target enrichment and resequencing is a widely used approach for identification of cancer genes and genetic variants associated with diseases. Although cost effective compared to whole genome sequencing, analysis of many samples constitutes a significant cost, which could be reduced by pooling samples before capture. Another limitation to the number of cancer samples that can be analyzed is often the amount of available tumor DNA. We evaluated the performance of whole genome amplified DNA and the power to detect subclonal somatic single nucleotide variants in non-indexed pools of cancer samples using the HaloPlex technology for target enrichment and next generation sequencing. Results: We captured a set of 1528 putative somatic single nucleotide variants and germline SNPs, which were identified by whole genome sequencing, with the HaloPlex technology and sequenced to a depth of 792-1752. We found that the allele fractions of the analyzed variants are well preserved during whole genome amplification and that capture specificity or variant calling is not affected. We detected a large majority of the known single nucleotide variants present uniquely in one sample with allele fractions as low as 0.1 in non-indexed pools of up to ten samples. We also identified and experimentally validated six novel variants in the samples included in the pools. Conclusion: Our work demonstrates that whole genome amplified DNA can be used for target enrichment equally well as genomic DNA and that accurate variant detection is possible in non-indexed pools of cancer samples. These findings show that analysis of a large number of samples is feasible at low cost, even when only small amounts of DNA is available, and thereby significantly increases the chances of indentifying recurrent mutations in cancer samples.
  •  
8.
  • Bergmann, Anke K., et al. (författare)
  • DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites
  • 2017
  • Ingår i: Pediatric Blood & Cancer. - : Wiley. - 1545-5009 .- 1545-5017. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.
  •  
9.
  • Borssén, Magnus, et al. (författare)
  • DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia
  • 2018
  • Ingår i: Clinical Epigenetics. - : BIOMED CENTRAL LTD. - 1868-7083 .- 1868-7075. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Few biological markers are associated with survival after relapse of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In pediatric T-cell ALL, we have identified promoter-associated methylation alterations that correlate with prognosis. Here, the prognostic relevance of CpG island methylation phenotype (CIMP) classification was investigated in pediatric BCP-ALL patients.Methods: Six hundred and one BCP-ALL samples from Nordic pediatric patients (age 1-18) were CIMP classified at initial diagnosis and analyzed in relation to clinical data.Results: Among the 137 patients that later relapsed, patients with a CIMP-profile (n = 42) at initial diagnosis had an inferior overall survival (pOS(5years) 33%) compared to CIMP+ patients (n = 95, pOS(5years) 65%) (p = 0.001), which remained significant in a Cox proportional hazards model including previously defined risk factors.Conclusion: CIMP classification is a strong candidate for improved risk stratification of relapsed BCP-ALL.
  •  
10.
  • Butler-Laporte, G, et al. (författare)
  • Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative
  • 2022
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 18:11, s. e1010367-
  • Tidskriftsartikel (refereegranskat)abstract
    • Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.
  •  
11.
  •  
12.
  • Chen, Dongfeng, et al. (författare)
  • CD99 expression is strongly associated with clinical outcome in children with B-cell precursor acute lymphoblastic leukaemia
  • 2019
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 184:3, s. 418-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Our study aimed to determine the expression pattern and clinical relevance of CD99 in paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). Our findings demonstrate that high expression levels of CD99 are mainly found in high-risk BCP-ALL, e.g. BCR-ABL1 and CRLF2 Re/Hi, and that high CD99 mRNA levels are strongly associated with a high frequency of relapse, high proportion of positive for minimal residual disease at day 29 and poor overall survival in paediatric cohorts, which indicate that CD99 is a potential biomarker for BCP-ALL.
  •  
13.
  • Chen, Dongfeng, et al. (författare)
  • RAG1 co-expression signature identifies ETV6-RUNX1-like B-cell precursor acute lymphoblastic leukemia in children
  • 2021
  • Ingår i: Cancer Medicine. - : John Wiley & Sons. - 2045-7634. ; 10:12, s. 3997-4003
  • Tidskriftsartikel (refereegranskat)abstract
    • B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be classified into subtypes according to the genetic aberrations they display. For instance, the translocation t(12;21)(p13;q22), representing the ETV6-RUNX1 fusion gene (ER), is present in a quarter of BCP-ALL cases. However, around 10% of the cases lack classifying chromosomal abnormalities (B-other). In pediatric ER BCP-ALL, rearrangement mediated by RAG (recombination-activating genes) has been proposed as the predominant driver of oncogenic rearrangement. Herein we analyzed almost 1600 pediatric BCP-ALL samples to determine which subtypes express RAG. We demonstrate that RAG1 mRNA levels are especially high in the ETV6-RUNX1 (ER) subtype and in a subset of B-other samples. We also define 31 genes that are co-expressed with RAG1 (RAG1-signature) in the ER subtype, a signature that also identifies this subset of B-other samples. Moreover, this subset also shares leukemia and pro-B gene expression signatures as well as high levels of the ETV6 target genes (BIRC7, WBP1L, CLIC5, ANGPTL2) with the ER subtype, indicating that these B-other cases are the recently identified ER-like subtype. We validated our results in a cohort where ER-like has been defined, which confirmed expression of the RAG1-signature in this recently described subtype. Taken together, our results demonstrate that the RAG1-signature identifies the ER-like subtype. As there are no definitive genetic markers to identify this novel subtype, the RAG1-signature represents a means to screen for this leukemia in children.
  •  
14.
  • Dumanski, Jan P., et al. (författare)
  • Immune cells lacking Y chromosome show dysregulation of autosomal gene expression
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 78:8, s. 4019-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
  •  
15.
  • Duran-Ferrer, Marti, et al. (författare)
  • The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome
  • 2020
  • Ingår i: NATURE CANCER. - : Springer Nature. - 2662-1347. ; 1:11, s. 1066-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm. We identify extensive individual-specific methylation variability in silenced chromatin associated with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose DNA methylation. We construct a DNA-methylation-based mitotic clock, called epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell tumors and is associated with particular driver genetic alterations. Our findings reveal DNA methylation as a holistic tracer of B-cell tumor developmental history, with implications in differential diagnosis and the prediction of clinical outcome. Martin-Subero and colleagues analyze DNA methylation patterns in B-cell tumors and their normal cells of origin, and develop epiCMIT, a methylation-based mitotic clock with prognostic relevance.
  •  
16.
  • Fallerini, Chiara, et al. (författare)
  • Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
  • 2022
  • Ingår i: Human Genetics. - : Springer Nature. - 0340-6717 .- 1432-1203. ; 141:1, s. 147-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
  •  
17.
  • Fang, Li Tai, et al. (författare)
  • Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 39:9, s. 1151-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-normal paired DNA samples from a breast cancer cell line and a matched lymphoblastoid cell line enable calibration of clinical sequencing pipelines and benchmarking 'tumor-only' or 'matched tumor-normal' analyses. The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.
  •  
18.
  • Fehr, Andre, et al. (författare)
  • Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia
  • 2023
  • Ingår i: Genes Chromosomes & Cancer. - : John Wiley & Sons. - 1045-2257 .- 1098-2264. ; 62:10, s. 597-606
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapy-resistant disease is a major cause of death in patients with acute lympho-blastic leukemia (ALL). Activation of the MYB oncogene is associated with ALL and leads to uncontrolled neoplastic cell proliferation and blocked differentiation. Here, we used RNA-seq to study the clinical significance of MYB expression and MYB alter-native promoter (TSS2) usage in 133 pediatric ALLs. RNA-seq revealed that all cases analyzed overexpressed MYB and demonstrated MYB TSS2 activity. qPCR analyses confirmed the expression of the alternative MYB promoter also in seven ALL cell lines. Notably, high MYB TSS2 activity was significantly associated with relapse (p = 0.007). Moreover, cases with high MYB TSS2 usage showed evidence of therapy-resistant disease with increased expression of ABC multidrug resistance transporter genes (e.g., ABCA2, ABCB5, and ABCC10) and enzymes catalyzing drug degradation (e.g., CYP1A2, CYP2C9, and CYP3A5). Elevated MYB TSS2 activity was further associated with augmented KRAS signaling (p < 0.05) and decreased methyla-tion of the conventional MYB promoter (p < 0.01). Taken together, our results sug-gest that MYB alternative promoter usage is a novel potential prognostic biomarker for relapse and therapy resistance in pediatric ALL.
  •  
19.
  • Foox, Jonathan, et al. (författare)
  • The SEQC2 epigenomics quality control (EpiQC) study
  • 2021
  • Ingår i: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA’s Epigenomics Quality Control Group.ResultsEach sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms.ConclusionsThe data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research.
  •  
20.
  • Gezelius, Henrik, PhD, 1977-, et al. (författare)
  • Comparison of high-throughput single-cell RNA-seq methods for ex vivo drug screening
  • 2024
  • Ingår i: NAR Genomics and Bioinformatics. - : Oxford University Press. - 2631-9268. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional precision medicine (FPM) aims to optimize patient-specific drug selection based on the unique characteristics of their cancer cells. Recent advancements in high throughput ex vivo drug profiling have accelerated interest in FPM. Here, we present a proof-of-concept study for an integrated experimental system that incorporates ex vivo treatment response with a single-cell gene expression output enabling barcoding of several drug conditions in one single-cell sequencing experiment. We demonstrate this through a proof-of-concept investigation focusing on the glucocorticoid-resistant acute lymphoblastic leukemia (ALL) E/R+ Reh cell line. Three different single-cell transcriptome sequencing (scRNA-seq) approaches were evaluated, each exhibiting high cell recovery and accurate tagging of distinct drug conditions. Notably, our comprehensive analysis revealed variations in library complexity, sensitivity (gene detection), and differential gene expression detection across the methods. Despite these differences, we identified a substantial transcriptional response to fludarabine, a highly relevant drug for treating high-risk ALL, which was consistently recapitulated by all three methods. These findings highlight the potential of our integrated approach for studying drug responses at the single-cell level and emphasize the importance of method selection in scRNA-seq studies. Finally, our data encompassing 27 327 cells are freely available to extend to future scRNA-seq methodological comparisons.
  •  
21.
  • Gronroos, Toni, et al. (författare)
  • Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia
  • 2020
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute lymphoblastic leukemia is marked by aberrant transcriptional features that alter cell differentiation, self-renewal, and proliferative features. We sought to identify the transcription factors exhibiting altered and subtype-specific expression patterns in B-ALL and report here that SOX11, a developmental and neuronal transcription factor, is aberrantly expressed in the ETV6-RUNX1 and TCF3-PBX1 subtypes of acute B-cell leukemias. We show that a high expression of SOX11 leads to alterations of gene expression that are typically associated with cell adhesion, migration, and differentiation. A high expression is associated with DNA hypomethylation at the SOX11 locus and a favorable outcome. The results indicate that SOX11 expression marks a group of patients with good outcomes and thereby prompts further study of its use as a biomarker.
  •  
22.
  • Gyllensten, Ulf B., et al. (författare)
  • Next Generation Plasma Proteomics Identifies High-Precision Biomarker Candidates for Ovarian Cancer
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Ovarian cancer is the eighth most common cancer among women and has a 5-year survival of only 30-50%. The survival is close to 90% for patients in stage I but only 20% for patients in stage IV. The presently available biomarkers have insufficient sensitivity and specificity for early detection and there is an urgent need to identify novel biomarkers. The aim of our study was to broadly measure protein biomarkers to find tests for the early detection of ovarian cancer. We found that combinations of 4-7 protein biomarkers can provide highly accurate detection of early- and late-stage ovarian cancer compared to benign conditions. The performance of the tests was then validated in a second independent cohort. Background: Ovarian cancer is the eighth most common cancer among women and has a 5-year survival of only 30-50%. The survival is close to 90% for patients in stage I but only 20% for patients in stage IV. The presently available biomarkers have insufficient sensitivity and specificity for early detection and there is an urgent need to identify novel biomarkers. Methods: We employed the Explore PEA technology for high-precision analysis of 1463 plasma proteins and conducted a discovery and replication study using two clinical cohorts of previously untreated patients with benign or malignant ovarian tumours (N = 111 and N = 37). Results: The discovery analysis identified 32 proteins that had significantly higher levels in malignant cases as compared to benign diagnoses, and for 28 of these, the association was replicated in the second cohort. Multivariate modelling identified three highly accurate models based on 4 to 7 proteins each for separating benign tumours from early-stage and/or late-stage ovarian cancers, all with AUCs above 0.96 in the replication cohort. We also developed a model for separating the early-stage from the late-stage achieving an AUC of 0.81 in the replication cohort. These models were based on eleven proteins in total (ALPP, CXCL8, DPY30, IL6, IL12, KRT19, PAEP, TSPAN1, SIGLEC5, VTCN1, and WFDC2), notably without MUCIN-16. The majority of the associated proteins have been connected to ovarian cancer but not identified as potential biomarkers. Conclusions: The results show the ability of using high-precision proteomics for the identification of novel plasma protein biomarker candidates for the early detection of ovarian cancer.
  •  
23.
  • Hård, Joanna, et al. (författare)
  • Long-read whole-genome analysis of human single cells
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-read sequencing has dramatically increased our understanding of human genome variation. Here, we demonstrate that long-read technology can give new insights into the genomic architecture of individual cells. Clonally expanded CD8+ T-cells from a human donor were subjected to droplet-based multiple displacement amplification (dMDA) to generate long molecules with reduced bias. PacBio sequencing generated up to 40% genome coverage per single-cell, enabling detection of single nucleotide variants (SNVs), structural variants (SVs), and tandem repeats, also in regions inaccessible by short reads. 28 somatic SNVs were detected, including one case of mitochondrial heteroplasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase compared to Illumina-based results from clonally related cells. Single-cell de novo assembly generated a genome size of up to 598 Mb and 1762 (12.8%) complete gene models. In summary, our work shows the promise of long-read sequencing toward characterization of the full spectrum of genetic variation in single cells.
  •  
24.
  • Imgenberg-Kreuz, Juliana, et al. (författare)
  • Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren's syndrome reveals regulatory effects at interferon-induced genes
  • 2016
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 75:11, s. 2029-2036
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Increasing evidence suggests an epigenetic contribution to the pathogenesis of autoimmune diseases, including primary Sjögren's Syndrome (pSS). The aim of this study was to investigate the role of DNA methylation in pSS by analysing multiple tissues from patients and controls.METHODS: Genome-wide DNA methylation profiles were generated using HumanMethylation450K BeadChips for whole blood, CD19+ B cells and minor salivary gland biopsies. Gene expression was analysed in CD19+ B cells by RNA-sequencing. Analysis of genetic regulatory effects on DNA methylation at known pSS risk loci was performed.RESULTS: We identified prominent hypomethylation of interferon (IFN)-regulated genes in whole blood and CD19+ B cells, including at the genes MX1, IFI44L and PARP9, replicating previous reports in pSS, as well as identifying a large number of novel associations. Enrichment for genomic overlap with histone marks for enhancer and promoter regions was observed. We showed for the first time that hypomethylation of IFN-regulated genes in pSS B cells was associated with their increased expression. In minor salivary gland biopsies we observed hypomethylation of the IFN-induced gene OAS2. Pathway and disease analysis resulted in enrichment of antigen presentation, IFN signalling and lymphoproliferative disorders. Evidence for genetic control of methylation levels at known pSS risk loci was observed.CONCLUSIONS: Our study highlights the role of epigenetic regulation of IFN-induced genes in pSS where replication is needed for novel findings. The association with altered gene expression suggests a functional mechanism for differentially methylated CpG sites in pSS aetiology.
  •  
25.
  •  
26.
  •  
27.
  • Ivanov Öfverholm, I., et al. (författare)
  • Overexpression of chromatin remodeling and tyrosine kinase genes in iAMP21-positive acute lymphoblastic leukemia
  • 2020
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 61:3, s. 604-613
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrachromosomal amplification of chromosome 21 (iAMP21) is a cytogenetic subtype associated with relapse and poor prognosis in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). The biology behind the high relapse risk is unknown and the aim of this study was to further characterize the genomic and transcriptional landscape of iAMP21. Using DNA arrays and sequencing, we could identify rearrangements and aberrations characteristic for iAMP21. RNA sequencing revealed that only half of the genes in the minimal region of amplification (20/45) were differentially expressed in iAMP21. Among them were the top overexpressed genes (p < 0.001) in iAMP21 vs. BCP ALL without iAMP21 and three candidate genes could be identified, the tyrosine kinase gene DYRK1A and chromatin remodeling genes CHAF1B and SON. While overexpression of DYRK1A and CHAF1B is associated with poor prognosis in malignant diseases including myeloid leukemia, this is the first study to show significant correlation with iAMP21-positive ALL.
  •  
28.
  • Jung, Christian, et al. (författare)
  • A comparison of very old patients admitted to intensive care unit after acute versus elective surgery or intervention
  • 2019
  • Ingår i: Journal of critical care. - : W B SAUNDERS CO-ELSEVIER INC. - 0883-9441 .- 1557-8615. ; 52, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to evaluate differences in outcome between patients admitted to intensive care unit (ICU) after elective versus acute surgery in a multinational cohort of very old patients (80 years; VIP). Predictors of mortality, with special emphasis on frailty, were assessed.Methods: In total, 5063 VIPs were induded in this analysis, 922 were admitted after elective surgery or intervention, 4141 acutely, with 402 after acute surgery. Differences were calculated using Mann-Whitney-U test and Wilcoxon test. Univariate and multivariable logistic regression were used to assess associations with mortality.Results: Compared patients admitted after acute surgery, patients admitted after elective surgery suffered less often from frailty as defined as CFS (28% vs 46%; p < 0.001), evidenced lower SOFA scores (4 +/- 5 vs 7 +/- 7; p < 0.001). Presence of frailty (CFS >4) was associated with significantly increased mortality both in elective surgery patients (7% vs 12%; p = 0.01), in acute surgery (7% vs 12%; p = 0.02).Conclusions: VIPs admitted to ICU after elective surgery evidenced favorable outcome over patients after acute surgery even after correction for relevant confounders. Frailty might be used to guide clinicians in risk stratification in both patients admitted after elective and acute surgery. 
  •  
29.
  • Krali, Olga, et al. (författare)
  • Dna methylation signatures predict cytogenetic subtype and outcome in pediatric acute myeloid leukemia (Aml)
  • 2021
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
30.
  • Krali, Olga, et al. (författare)
  • Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia
  • 2023
  • Ingår i: npj Precision Oncology. - : Springer Nature. - 2397-768X. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype frequencies in the Nordic countries.
  •  
31.
  • Lindqvist, C. Mårten, et al. (författare)
  • Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:39, s. 64071-64088
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic and 24 relapse samples from 172 pediatric ALL patients. We found an overall greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the mutations in T-ALL had occurred in the original leukemic clone, while most of the mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified ATRX as a novel putative driver gene and uncovered an association between somatic mutations in the Notch signaling pathway at ALL diagnosis and increased risk of relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated genes. The genes highlighted in our study were frequently involved in epigenetic regulation, associated with germline susceptibility to ALL, and present in minor subclones at diagnosis that became dominant at relapse. We observed a high degree of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL and T-ALL, which could have implications for the treatment efficiency.
  •  
32.
  •  
33.
  •  
34.
  • Lindqvist, C Mårten, et al. (författare)
  • The Mutational Landscape in Pediatric Acute Lymphoblastic Leukemia Deciphered by Whole Genome Sequencing
  • 2015
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 36:1, s. 118-128
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic characterization of pediatric acute lymphoblastic leukemia (ALL) has identified distinct patterns of genes and pathways altered in patients with well-defined genetic aberrations. To extend the spectrum of known somatic variants in ALL, we performed whole genome and transcriptome sequencing of three B-cell precursor patients, of which one carried the t(12;21)ETV6-RUNX1 translocation and two lacked a known primary genetic aberration, and one T-ALL patient. We found that each patient had a unique genome, with a combination of well-known and previously undetected genomic aberrations. By targeted sequencing in 168 patients, we identified KMT2D and KIF1B as novel putative driver genes. We also identified a putative regulatory non-coding variant that coincided with overexpression of the growth factor MDK. Our results contribute to an increased understanding of the biological mechanisms that lead to ALL and suggest that regulatory variants may be more important for cancer development than recognized to date. The heterogeneity of the genetic aberrations in ALL renders whole genome sequencing particularly well suited for analysis of somatic variants in both research and diagnostic applications.
  •  
35.
  •  
36.
  • Lysenkova Wiklander, Mariya, et al. (författare)
  • Genomic, transcriptomic and epigenomic sequencing data of the B-cell leukemia cell line REH
  • 2023
  • Ingår i: BMC Research Notes. - : BioMed Central (BMC). - 1756-0500. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesThe aim of this data paper is to describe a collection of 33 genomic, transcriptomic and epigenomic sequencing datasets of the B-cell acute lymphoblastic leukemia (ALL) cell line REH. REH is one of the most frequently used cell lines for functional studies of pediatric ALL, and these data provide a multi-faceted characterization of its molecular features. The datasets described herein, generated with short- and long-read sequencing technologies, can both provide insights into the complex aberrant karyotype of REH, and be used as reference datasets for sequencing data quality assessment or for methods development.Data descriptionThis paper describes 33 datasets corresponding to 867 gigabases of raw sequencing data generated from the REH cell line. These datasets include five different approaches for whole genome sequencing (WGS) on four sequencing platforms, two RNA sequencing (RNA-seq) techniques on two different sequencing platforms, DNA methylation sequencing, and single-cell ATAC-sequencing.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Marincevic-Zuniga, Yanara, et al. (författare)
  • Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles
  • 2017
  • Ingår i: Journal of Hematology & Oncology. - : Springer Science and Business Media LLC. - 1756-8722. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Structural chromosomal rearrangements that lead to expressed fusion genes are a hallmark of acute lymphoblastic leukemia (ALL). In this study, we performed transcriptome sequencing of 134 primary ALL patient samples to comprehensively detect fusion transcripts. Methods: We combined fusion gene detection with genome-wide DNA methylation analysis, gene expression profiling, and targeted sequencing to determine molecular signatures of emerging ALL subtypes. Results: We identified 64 unique fusion events distributed among 80 individual patients, of which over 50% have not previously been reported in ALL. Although the majority of the fusion genes were found only in a single patient, we identified several recurrent fusion gene families defined by promiscuous fusion gene partners, such as ETV6, RUNX1, PAX5, and ZNF384, or recurrent fusion genes, such as DUX4-IGH. Our data show that patients harboring these fusion genes displayed characteristic genome-wide DNA methylation and gene expression signatures in addition to distinct patterns in single nucleotide variants and recurrent copy number alterations. Conclusion: Our study delineates the fusion gene landscape in pediatric ALL, including both known and novel fusion genes, and highlights fusion gene families with shared molecular etiologies, which may provide additional information for prognosis and therapeutic options in the future.
  •  
41.
  • Marzouka, Nour-al-dain, et al. (författare)
  • CopyNumber450kCancer : baseline correction for accurate copy number calling from the 450k methylation array
  • 2016
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 32:7, s. 1080-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • The Illumina Infinium HumanMethylation450 BeadChip (450k) is widely used for the evaluation of DNA methylation levels in large-scale datasets, particularly in cancer. The 450k design allows copy number variant (CNV) calling using existing bioinformatics tools. However, in cancer samples, numerous large-scale aberrations cause shifting in the probe intensities and thereby may result in erroneous CNV calling. Therefore, a baseline correction process is needed. We suggest the maximum peak of probe segment density to correct the shift in the intensities in cancer samples.
  •  
42.
  • Mattisson, Jonas, et al. (författare)
  • Leukocytes with chromosome Y loss have reduced abundance of the cell surface immunoprotein CD99
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.
  •  
43.
  • Milani, Lili, et al. (författare)
  • Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation
  • 2009
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 19:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2, 529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood samples of 197 children with ALL. Using a reproducible, quantitative genotyping method and stringent criteria for scoring ASE, we found that 16% of the analyzed genes display ASE in multiple ALL cell samples. For most of the genes, the level of ASE varied largely between the samples, from 1.4-fold overexpression of one allele to apparent monoallelic expression. For genes exhibiting ASE, 55% displayed bidirectional ASE in which overexpression of either of the two SNP alleles occurred. For bidirectional ASE we also observed overall higher levels of ASE and correlation with the methylation level of these sites. Our results demonstrate that CpG site methylation is one of the factors that regulates gene expression in ALL cells.
  •  
44.
  • Milani, Lili, et al. (författare)
  • DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia.
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 115:6, s. 1214-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite improvements in the prognosis of childhood acute lymphoblastic leukemia (ALL), subgroups of patients would benefit from alternative treatment approaches. Our aim was to identify genes with DNA methylation profiles that could identify such groups. We determined the methylation levels of 1320 CpG sites in regulatory regions of 416 genes in cells from 401 children diagnosed with ALL. Hierarchical clustering of 300 CpG sites distinguished between T-lineage ALL and B-cell precursor (BCP) ALL and between the main cytogenetic subtypes of BCP ALL. It also stratified patients with high hyperdiploidy and t(12;21) ALL into 2 subgroups with different probability of relapse. By using supervised learning, we constructed multivariate classifiers by external cross-validation procedures. We identified 40 genes that consistently contributed to accurate discrimination between the main subtypes of BCP ALL and gene sets that discriminated between subtypes of ALL and between ALL and controls in pairwise classification analyses. We also identified 20 individual genes with DNA methylation levels that predicted relapse of leukemia. Thus, methylation analysis should be explored as a method to improve stratification of ALL patients. The genes highlighted in our study are not enriched to specific pathways, but the gene expression levels are inversely correlated to the methylation levels.
  •  
45.
  • Mosquera Orgueira, Adrián, et al. (författare)
  • Refining risk prediction in pediatric acute lymphoblastic leukemia through DNA methylation profiling
  • 2024
  • Ingår i: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7083. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling.
  •  
46.
  • Mäkinen, Artturi, et al. (författare)
  • Expression of BCL6 in paediatric B-cell acute lymphoblastic leukaemia and association with prognosis
  • 2021
  • Ingår i: Pathology. - : Elsevier BV. - 0031-3025 .- 1465-3931. ; 53:7, s. 875-882
  • Tidskriftsartikel (refereegranskat)abstract
    • B-cell lineage acute lymphoblastic leukaemia (B-ALL) is the most common paediatric malignancy. Transcription factor B-cell lymphoma 6 (BCL6) is essential to germinal centre formation and antibody affinity maturation and plays a major role in mature B-cell malignancies. More recently, it was shown to act as a critical downstream regulator in pre-BCR+ B-ALL. We investigated the expression of the BCL6 protein in a population-based cohort of paediatric B-ALL cases and detected moderate to strong positivity through immunohistochemistry in 7% of cases (8/117); however, only two of eight BCL6 cases (25%) co-expressed the ZAP70 protein. In light of these data, the subtype with active pre-BCR signalling constitutes a rare entity in paediatric B-ALL. In three independent larger cohorts with gene expression data, high BCL6 mRNA levels were associated with the TCF3-PBX1, Ph-like, NUTM1, MEF2D and PAX5-alt subgroups and the ‘metagene’ signature for pre-BCR-associated genes. However, higher-than-median BCL6 mRNA level alone was associated with favourable event free survival in the Nordic paediatric cohort, indicating that using BCL6 as a diagnostic marker requires careful design, and evaluation of protein level is needed alongside the genetic or transcriptomic data.
  •  
47.
  • Nordlund, Jessica (författare)
  • BCP neoplasms : same or different?
  • 2024
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 144:1, s. 4-6
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this issue of Blood, Kroeze et al1 provide an in-depth analysis of the genomic and transcriptomic landscape of pediatric B-cell precursor lymphoblastic lymphoma (BCP-LBL). Pediatric B-cell precursor malignancies present in 2 distinct forms: BCP acute lymphoblastic leukemia (BCP-ALL), predominantly affecting the bone marrow and blood, and the less common BCP-LBL, characterized by its origin in extramedullary tissues and presentation as a solid tumor rather than widespread bone marrow involvement (see figure). Despite their morphologic and immunophenotypic similarities, most studies to date have focused on BCP-ALL, leaving BCP-LBL relatively understudied.
  •  
48.
  • Nordlund, Jessica (författare)
  • Chapter Eleven : Advances in whole genome methylomic sequencing
  • 2020
  • Ingår i: Epigenetics Methods. - : Elsevier. ; 18, s. 213-233
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable advances in high throughput sequencing have brought unprecedented progression to the field of epigenomic research, particularly in the area of genome-wide DNA methylation analysis. The variety of approaches available have enabled genome-wide profiling of countless cell types and states, resulting in findings that have proved instrumental for advancing our understanding of cellular identity in development, health, and disease. The methylome-wide approaches that are available today vary in many aspects, such as required DNA input, degree of genomic resolution and coverage, and ability of quantification. This chapter discusses the historical development, proven modifications, and the many applications for analysis of DNA methylation and other base modifications on a global scale, as well as their translational potential.
  •  
49.
  • Nordlund, Jessica, et al. (författare)
  • Computational and Statistical Analysis of Array-Based DNA Methylation Data
  • 2019
  • Ingår i: Methods Mol Biol. - New York, NY : Springer New York. ; 1878, s. 173-191
  • Tidskriftsartikel (refereegranskat)abstract
    • The characterization of aberrant DNA methylation is emerging as a key part of the study of cancer development and phenotype. The technical advancements and decreasing costs of methods for high-throughput profiling of DNA methylation have brought about a high interest in the use of such methods in disease association studies. Here we discuss the principles for DNA methylation analysis using data from the Infinium DNA methylation BeadChip assays and describe the computational steps and statistical considerations going from processing of the raw array data to analysis of differential methylation. Moreover, we provide detailed guidelines on how to perform tumor subtype classification based on DNA methylation signatures.
  •  
50.
  • Nordlund, Jessica, et al. (författare)
  • Digital gene expression profiling of primary acute lymphoblastic leukemia cells
  • 2012
  • Ingår i: Leukemia. - : Nature Publishing Group. - 0887-6924 .- 1476-5551. ; 26:6, s. 1218-1227
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined the genome-wide digital gene expression (DGE) profiles of primary acute lymphoblastic leukemia (ALL) cells from 21 patients taking advantage of `second-generation sequencing technology. Patients included in this study represent four cytogenetically distinct subtypes of B-cell precursor (BCP) ALL and T-cell lineage ALL (T-ALL). The robustness of DGE combined with supervised classification by nearest shrunken centroids (NSC) was validated experimentally and by comparison with published expression data for large sets of ALL samples. Genes that were differentially expressed between BCP ALL subtypes were enriched to distinct signaling pathways with dic(9;20) enriched to TP53 signaling, t(9;22) to interferon signaling, as well as high hyperdiploidy and t(12;21) to apoptosis signaling. We also observed antisense tags expressed from the non-coding strand of similar to 50% of annotated genes, many of which were expressed in a subtype-specific pattern. Antisense tags from 17 gene regions unambiguously discriminated between the BCP ALL and T-ALL subtypes, and antisense tags from 76 gene regions discriminated between the 4 BCP subtypes. We observed a significant overlap of gene regions with alternative polyadenylation and antisense transcription (Pless than1 x 10(-15)). Our study using DGE profiling provided new insights into the RNA expression patterns in ALL cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 81
Typ av publikation
tidskriftsartikel (71)
annan publikation (6)
konferensbidrag (2)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (67)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Nordlund, Jessica (79)
Raine, Amanda (20)
Forestier, Erik (19)
Syvänen, Ann-Christi ... (19)
Lönnerholm, Gudmar, ... (17)
Marincevic-Zuniga, Y ... (16)
visa fler...
Heyman, Mats (14)
Lundmark, Anders (13)
Lönnerholm, Gudmar (13)
Syvänen, Ann-Christi ... (11)
Schmiegelow, Kjeld (11)
Abrahamsson, Jonas, ... (9)
Noren-Nyström, Ulrik ... (9)
Flaegstad, Trond (9)
Cavelier, Lucia (8)
Berglund, Eva C (8)
Abrahamsson, Jonas (7)
Rönnblom, Lars (7)
Wahlberg, Per (7)
Dahlberg, Johan (7)
Liljedahl, Ulrika (7)
Larsson, Rolf (6)
Palle, Josefine (6)
Heyman, M. (6)
Fogelstrand, Linda, ... (6)
Almlöf, Jonas Carlss ... (6)
Kanerva, Jukka (6)
Eloranta, Maija-Leen ... (5)
Gustafsson, Mats G. (5)
Ameur, Adam (5)
Barbany, Gisela (5)
Imgenberg-Kreuz, Jul ... (5)
Fioretos, Thoas (4)
Jonsson, Olafur G. (4)
Nordmark, Gunnel (4)
Mason, Christopher E ... (4)
Övernäs, Elin (4)
Barbany, G (4)
Ekman, Diana (4)
Grander, Dan (4)
Palmqvist, Lars, 196 ... (4)
Martin, Tom (4)
Sandling, Johanna K. (4)
Bunikis, Ignas (4)
Feuk, Lars (4)
Nordgren, Ann (4)
Lohi, Olli (4)
Zachariadis, Vasilio ... (4)
Söderhäll, Stefan (4)
Chen, Zhong (4)
visa färre...
Lärosäte
Uppsala universitet (77)
Karolinska Institutet (27)
Umeå universitet (20)
Göteborgs universitet (16)
Stockholms universitet (6)
Kungliga Tekniska Högskolan (5)
visa fler...
Lunds universitet (5)
Linköpings universitet (4)
Sveriges Lantbruksuniversitet (2)
visa färre...
Språk
Engelska (81)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (72)
Naturvetenskap (9)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy