SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordman S) "

Sökning: WFRF:(Nordman S)

  • Resultat 1-50 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
31.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
32.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
33.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
34.
  • Tala, T., et al. (författare)
  • Role of NBI fuelling in contributing to density peaking between the ICRH and NBI identity plasmas on JET
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Density peaking has been studied between an ICRH and NBI identity plasma in JET. The comparison shows that 8 MW of NBI heating/fueling increases the density peaking by a factor of two, being R/L (n) = 0.45 for the ICRH pulse and R/L (n) = 0.93 for the NBI one averaged radially over rho (tor) = 0.4, 0.8. The dimensionless profiles of q, rho *, upsilon *, beta (n) and T (i)/T (e) approximate to 1 were matched within 5% difference except in the central part of the plasma (rho (tor) < 0.3). The difference in the curvature pinch (same q-profile) and thermo-pinch (T (i) = T (e)) between the ICRH and NBI discharges is virtually zero. Both the gyro-kinetic simulations and integrated modelling strongly support the experimental result where the NBI fuelling is the main contributor to the density peaking for this identity pair. It is to be noted here that the integrated modeling does not reproduce the measured electron density profiles, but approximately reproduces the difference in the density profiles between the ICRH and NBI discharge. Based on these modelling results and the analyses, the differences between the two pulses in impurities, fast ions (FIs), toroidal rotation and radiation do not cause any such changes in the background transport that would invalidate the experimental result where the NBI fuelling is the main contributor to the density peaking. This result of R/L (n) increasing by a factor of 2 per 8 MW of NBI power is valid for the ion temperature gradient dominated low power H-mode plasmas. However, some of the physics processes influencing particle transport, like rotation, turbulence and FI content scale with power, and therefore, the simple scaling on the role of the NBI fuelling in JET is not necessarily the same under higher power conditions or in larger devices.
  •  
35.
  •  
36.
  •  
37.
  • Gu, HF, et al. (författare)
  • Quantitative trait loci near the insulin-degrading enzyme (IDE) gene contribute to variation in plasma insulin levels
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 53:8, s. 2137-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-degrading enzyme (IDE) plays a principal role in the proteolysis of several peptides in addition to insulin and is encoded by IDE, which resides in a region of chromosome 10q that is linked to type 2 diabetes. Two recent studies presented genetic association data on IDE and type 2 diabetes (one positive and the other negative), but neither explored the fundamental question of whether polymorphism in IDE has a measurable influence on insulin levels in human populations. To address this possibility, 14 single nucleotide polymorphisms (SNPs) from a linkage disequilibrium block encompassing IDE have been genotyped in a sample of 321 impaired glucose tolerant and 403 nondiabetic control subjects. Analyses based on haplotypic genotypes (diplotypes), constructed with SNPs that differentiate common extant haplotypes extending across IDE, provided compelling evidence of association with fasting insulin levels (P = 0.0009), 2-h insulin levels (P = 0.0027), homeostasis model assessment of insulin resistance (P = 0.0001), and BMI (P = 0.0067), with effects exclusively evident in men. The strongest evidence for an effect of a single marker was obtained for rs2251101 (located near the 3′ untranslated region of IDE) on 2-h insulin levels (P = 0.000023). Diplotype analyses, however, suggest the presence of multiple interacting trait-modifying sequences in the region. Results indicate that polymorphism in/near IDE contributes to a large proportion of variance in plasma insulin levels and correlated traits, but questions of sex specificity and allelic heterogeneity will need to be taken into consideration as the molecular basis of the observed phenotypic effects unfolds.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Tala, T., et al. (författare)
  • Density peaking in JET-determined by fuelling or transport?
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Core density profile peaking and electron particle transport have been extensively studied by performing several dimensionless collisionality (upsilon*) scans with other matched dimensionless profiles in various plasma operation scenarios on the Joint European Torus (JET). This is the first time when electron particle transport coefficients in the H-mode have been measured on JET with high resolution diagnostics, and therefore we are in a position to distinguish between the neutral beam injection (NBI) source and inward electron particle pinch in contributing to core density peaking. The NBI particle source is found to contribute typically 50%-60% to the electron density peaking in JET H-mode plasmas where T-e/T-i similar to 1 or smaller and at upsilon* = 0.1-0.5 (averaged between r/a = 0.3-0.8), and being independent of upsilon* within that range. In these H-mode plasmas, the electron particle transport coefficients, D-e and v(e), are small, thus giving rise to the large influence of NBI fueling with respect to transport effect on peaking. In L-mode plasma conditions, the role of the NBI source is small, typically 10%-20%, and the electron particle transport coefficients are large. These dimensionless upsilon* scans give the best possible data for model validation. TGLF simulations are in good agreement with the experimental results with respect to the role of NBI particle source versus inward pinch in affecting density peaking, both for the H-mode and L-mode upsilon* scans. It predicts, similarly to experimental results, that typically about half of the peaking originates from the NBI fuelling in the H-mode and 10%-20% in the L-mode. GENE simulation results also support the key role of NBI fuelling in causing a peaked density profile in JET H-mode plasma (T-e/T-i similar to 1 and upsilon* = 0.1-0.5) and, in fact, give an even higher weight on NBI fuelling than that experimentally observed or predicted by TGLF. For the non-fuelled H-mode plasma at higher T-e/T-i = 1.5 and lower beta(N) and upsilon*, both TGLF and GENE predict peaked density profiles, therefore agreeing well with experimental steady-state density peaking. Overall, the various modelling results give a fairly good confidence in using TGLF and GENE in predicting density peaking in quite a wide range of plasma conditions in JET.
  •  
47.
  • Tala, T., et al. (författare)
  • Dimensionless collisionality scans for core particle transport in JET
  • 2015
  • Ingår i: 42nd European Physical Society Conference on Plasma Physics, EPS 2015.
  • Konferensbidrag (refereegranskat)abstract
    • Density peaking increases in the inner core (r/a=0.3) from 0.3 to 2.7 and in the outer core (r/a=0.8) from 1.6 to 3.5 when ν∗ decreases from 0.47 to 0.09 in JET H-mode plasmas while density peaking does not depend on ν∗ in JET L-mode plasma. For this particular scan, experimental evidence indicates that a dominant part of this peaking originates from NBI fuelling and inward pinch is a subdominant fraction. This is supported by the simple linear runs with GYRO although much more work is needed here to make a conclusion. More discharges are needed to quantify more precisely the fractions of these two contributions and also much more work is required on the modelling front to make exact comparisons.
  •  
48.
  •  
49.
  • Fransson, Emil, 1986, et al. (författare)
  • Comparing particle transport in JET and DIII-D plasmas: gyrokinetic and gyrofluid modelling
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport modelling, for two dimensionless collisionality scaling experiments at the Joint European Torus (JET) and DIII-D with three discharges each, is presented. Experimental data from JET (Tala et al 2019 Nucl. Fusion 59 126030) and DIII-D (Mordijck et al 2020 Nucl. Fusion 60 066019) show a dissimilar dependence in the density peaking from the source and turbulent transport. The discharges from the JET collisionality scan show that the source is dominant for the density peaking, which is contrary to DIII-D where the transport is the main cause for the peaking. In this article, the different dependency on the source is studied by investigating the zero flux density gradient (peaking factor) at radial position rho(t) = 0.6 and by calculating the averaged perturbed diffusion and pinch between rho(t) = 0.5 and rho(t) = 0.8. Results show that the difference of the normalized temperature gradients have the largest and considerable impact on the peaking factor. The calculated diffusion and pinch showed good match with the experimental measured perturbed values. The calculated ratio of the particle balance pinch and diffusion explained the difference in peaking from turbulent transport, a high ratio for DIII-D yielding high peaking and a low ratio for JET yielding low peaking. However the particle balance diffusion, which suppresses the peaking from the source, was high for DIII-D and low for JET. Thusly, explaining the particle source much larger impact on the peaking at JET.
  •  
50.
  • Loarte, A., et al. (författare)
  • H-mode plasmas in the pre-fusion power operation 1 phase of the ITER research plan
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the pre-fusion power operation 1 (PFPO-1) phase of the ITER research plan, where the additional plasma heating will be provided by 20 MW of electron cyclotron heating, are assessed in order to identify key open R&D issues. The assessment is performed on the basis of empirical and physics-based scalings derived from present experiments and integrated modelling of these plasmas including a range of first-principle transport models for the core plasma. The predictions of the integrated modelling of ITER H-mode plasmas are compared with ITER-relevant experiments carried out at JET (low-collisionality high-current H modes) and ASDEX Upgrade (significant electron heating) for both global H-mode properties and scale lengths of density and temperature profiles finding reasonable agreement. Specific integration issues of the PFPO-1 H-mode plasma scenarios are discussed taking into account the impact of the specificities of the ITER tokamak design (level of ripple, etc).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 56

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy