SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Noseworthy Michael) "

Search: WFRF:(Noseworthy Michael)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Attia, Zachi I., et al. (author)
  • Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
  • 2021
  • In: Mayo Clinic proceedings. - : ELSEVIER SCIENCE INC. - 0025-6196 .- 1942-5546. ; 96:8, s. 2081-2094
  • Journal article (peer-reviewed)abstract
    • Objective: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). Methods: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. Results: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. Conclusion: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. (C) 2021 Mayo Foundation Medical Education and Research
  •  
2.
  • Ovalle, Anaelia, et al. (author)
  • Queer In AI : A Case Study in Community-Led Participatory AI
  • 2023
  • In: FAccT '23. - : Association for Computing Machinery (ACM). - 9798400701924 ; , s. 1882-1895
  • Conference paper (peer-reviewed)abstract
    • Queerness and queer people face an uncertain future in the face of ever more widely deployed and invasive artificial intelligence (AI). These technologies have caused numerous harms to queer people, including privacy violations, censoring and downranking queer content, exposing queer people and spaces to harassment by making them hypervisible, deadnaming and outing queer people. More broadly, they have violated core tenets of queerness by classifying and controlling queer identities. In response to this, the queer community in AI has organized Queer in AI, a global, decentralized, volunteer-run grassroots organization that employs intersectional and community-led participatory design to build an inclusive and equitable AI future. In this paper, we present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community's programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organization's impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AI's work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods.
  •  
3.
  • Squires, Janet E., et al. (author)
  • The Implementation in Context (ICON) Framework: A meta-framework of context domains, attributes and features in healthcare
  • 2023
  • In: Health Research Policy and Systems. - 1478-4505. ; 21:1
  • Journal article (peer-reviewed)abstract
    • Background There is growing evidence that context mediates the effects of implementation interventions intended to increase healthcare professionals’ use of research evidence in clinical practice. However, conceptual clarity about what comprises context is elusive. The purpose of this study was to advance conceptual clarity on context by developing the Implementation in Context Framework, a meta-framework of the context domains, attributes and features that can facilitate or hinder healthcare professionals’ use of research evidence and the effectiveness of implementation interventions in clinical practice.Methods We conducted a meta-synthesis of data from three interrelated studies: (1) a concept analysis of published literature on context (n = 70 studies), (2) a secondary analysis of healthcare professional interviews (n = 145) examining context across 11 unique studies and (3) a descriptive qualitative study comprised of interviews with heath system stakeholders (n = 39) in four countries to elicit their tacit knowledge on the attributes and features of context. A rigorous protocol was followed for the meta-synthesis, resulting in development of the Implementation in Context Framework. Following this meta-synthesis, the framework was further refined through feedback from experts in context and implementation science.Results In the Implementation in Context Framework, context is conceptualized in three levels: micro (individual), meso (organizational), and macro (external). The three levels are composed of six contextual domains: (1) actors (micro), (2) organizational climate and structures (meso), (3) organizational social behaviour (meso), (4) organizational response to change (meso), (5) organizational processes (meso) and (6) external influences (macro). These six domains contain 22 core attributes of context and 108 features that illustrate these attributes.Conclusions The Implementation in Context Framework is the only meta-framework of context available to guide implementation efforts of healthcare professionals. It provides a comprehensive and critically needed understanding of the context domains, attributes and features relevant to healthcare professionals’ use of research evidence in clinical practice. The Implementation in Context Framework can inform implementation intervention design and delivery to better interpret the effects of implementation interventions, and pragmatically guide implementation efforts that enhance evidence uptake and sustainability by healthcare professionals.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view