SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Noske A) "

Sökning: WFRF:(Noske A)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • In ’t Veld, Sjors G.J.G., et al. (författare)
  • Detection and localization of early- and late-stage cancers using platelet RNA
  • 2022
  • Ingår i: Cancer Cell. - : Elsevier. - 1535-6108 .- 1878-3686. ; 40:9, s. 999-1009.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.
  •  
2.
  •  
3.
  • Noske, G. D., et al. (författare)
  • A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process : SARS-CoV-2 Mpro maturation
  • 2021
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836. ; 433:18
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral Mpro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of Mpro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 Mpro. For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the Mpro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.
  •  
4.
  • Best, Myron G., et al. (författare)
  • RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics
  • 2015
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 28:5, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies".
  •  
5.
  • Best, Myron G., et al. (författare)
  • Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets
  • 2017
  • Ingår i: Cancer Cell. - : Elsevier. - 1535-6108 .- 1878-3686. ; 32:2, s. 238-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources.
  •  
6.
  • Sol, Nik, et al. (författare)
  • Tumor-Educated Platelet RNA for the Detection and (Pseudo)progression Monitoring of Glioblastoma
  • 2020
  • Ingår i: Cell Reports Medicine. - : Elsevier. - 2666-3791. ; 1:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74-0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95-0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70-1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.
  •  
7.
  • Tannous, Bakhos A., et al. (författare)
  • Effects of the Selective MPS1 Inhibitor MPS1-IN-3 on Glioblastoma Sensitivity to Antimitotic Drugs
  • 2013
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 105:17, s. 1322-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Glioblastomas exhibit a high level of chemotherapeutic resistance, including to the antimitotic agents vincristine and taxol. During the mitotic agent-induced arrest, glioblastoma cells are able to perform damage-control and self-repair to continue proliferation. Monopolar spindle 1 (MPS1/TTK) is a checkpoint kinase and a gatekeeper of the mitotic arrest.Methods We used glioblastoma cells to determine the expression of MPS1 and to determine the effects of MPS1 inhibition on mitotic errors and cell viability in combination with vincristine and taxol. The effect of MPS1 inhibition was assessed in different orthotopic glioblastoma mouse models (n = 3-7 mice/group). MPS1 expression levels were examined in relation to patient survival.Results Using publicly available gene expression data, we determined that MPS1 overexpression corresponds positively with tumor grade and negatively with patient survival (two-sided t test, P < .001). Patients with high MPS1 expression (n = 203) had a median and mean survival of 487 and 913 days (95% confidence intervals [CI] = 751 to 1075), respectively, and a 2-year survival rate of 35%, whereas patients with intermediate MPS1 expression (n = 140) had a median and mean survival of 858 and 1183 days (95% CI = 1177 to 1189), respectively, and a 2-year survival rate of 56%. We demonstrate that MPS1 inhibition by RNAi results in sensitization to antimitotic agents. We developed a selective small-molecule inhibitor of MPS1, MPS1-IN-3, which caused mitotic aberrancies in glioblastoma cells and, in combination with vincristine, induced mitotic checkpoint override, increased aneuploidy, and augmented cell death. MPS1-IN-3 sensitizes glioblastoma cells to vincristine in orthotopic mouse models (two-sided log-rank test, P < .01), resulting in prolonged survival without toxicity.Conclusions Our results collectively demonstrate that MPS1, a putative therapeutic target in glioblastoma, can be selectively inhibited by MPS1-IN-3 sensitizing glioblastoma cells to antimitotic drugs.
  •  
8.
  • Nilsson, R. Jonas A., et al. (författare)
  • Blood platelets contain tumor-derived RNA biomarkers
  • 2011
  • Ingår i: Blood. - New York : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 118:13, s. 3680-3683
  • Tidskriftsartikel (refereegranskat)abstract
    • Diagnostic platforms providing biomarkers that are highly predictive for diagnosing, monitoring, and stratifying cancer patients are key instruments in the development of personalized medicine. We demonstrate that tumor cells transfer (mutant) RNA into blood platelets in vitro and in vivo, and show that blood platelets isolated from glioma and prostate cancer patients contain the cancer-associated RNA biomarkers EGFRvIII and PCA3, respectively. In addition, gene-expression profiling revealed a distinct RNA signature in platelets from glioma patients compared with normal control subjects. Because platelets are easily accessible and isolated, they may form an attractive platform for the companion diagnostics of cancer.
  •  
9.
  • Smits, Michiel, et al. (författare)
  • Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:1, s. e16282-
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role.
  •  
10.
  • Smits, Michiel, et al. (författare)
  • miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis
  • 2010
  • Ingår i: Oncotarget. - : Impact Journals LLC. - 1949-2553. ; 1:8, s. 710-720
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Glioblastoma (GBM) is a malignant brain tumor with dismal prognosis. GBM patients have a median survival of less than 2 years. GBM is characterized by fast cell proliferation, infiltrative migration, and by the induction of angiogenesis. MicroRNAs and polycomb group (PcG) proteins have emerged as important regulators of gene expression.METHODS: Here we determined that miR-101 is down-regulated in GBM, resulting in overexpression of the miR-101 target PcG protein EZH2, a histone methyltransferase affecting gene expression profiles in an epigenetic manner.RESULTS: Inhibition of EZH2 in vitro by pre-miR-101, EZH2 siRNA, or small molecule DZNep, attenuated GBM cell growth, migration/invasion, and GBM-induced endothelial tubule formation. In addition, for each biological process we identified ontology-associated transcripts that significantly correlate with EZH2 expression. Inhibition of EZH2 in vivo by systemic DZNep administration in a U87-Fluc-mCherry GBM xenograft mouse imaging model resulted in reduced tumor growth.CONCLUSION: Our results indicate that EZH2 has a versatile function in GBM progression and that its overexpression is at least partly due to decreased miR-101 expression. Inhibition of EZH2 may be a potential therapeutic strategy to target GBM proliferation, migration, and angiogenesis.
  •  
11.
  • Van Rijn, S., et al. (författare)
  • Functional multiplex reporter assay using tagged Gaussia luciferase
  • 2013
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a multiplex reporter system to monitor multiple biological variables in real-time. The secreted Gaussia luciferase was fused to ten different epitope tags (Gluc tag), each expressed in different tumor cells. By immunobinding of the tags followed by Gluc tag detection, this system allowed the independent and real-time monitoring of mixed cell cultures in vitro and of mixed subcutaneous and intracranial tumor subpopulations in vivo.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy