SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nuttall Alfred L.) "

Sökning: WFRF:(Nuttall Alfred L.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Warren, Rebecca L., et al. (författare)
  • Minimal basilar membrane motion in low-frequency hearing
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 113:30, s. E4304-E4310
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea.
  •  
2.
  • Chen, Fangyi, et al. (författare)
  • A differentially amplified motion in the ear for near-threshold sound detection
  • 2011
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 14:6, s. 770-774
  • Tidskriftsartikel (refereegranskat)abstract
    • The ear is a remarkably sensitive pressure fluctuation detector. In guinea pigs, behavioral measurements indicate a minimum detectable sound pressure of ∼20 μPa at 16 kHz. Such faint sounds produce 0.1-nm basilar membrane displacements, a distance smaller than conformational transitions in ion channels. It seems that noise within the auditory system would swamp such tiny motions, making weak sounds imperceptible. Here we propose a new mechanism contributing to a resolution of this problem and validate it through direct measurement. We hypothesized that vibration at the apical side of hair cells is enhanced compared with that at the commonly measured basilar membrane side. Using in vivo optical coherence tomography, we demonstrated that apical-side vibrations peaked at a higher frequency, had different timing and were enhanced compared with those at the basilar membrane. These effects depend nonlinearly on the stimulus sound pressure level. The timing difference and enhancement of vibrations are important for explaining how the noise problem is circumvented.
  •  
3.
  • Ramamoorthy, Sripriya, et al. (författare)
  • Filtering of Acoustic Signals within the Hearing Organ
  • 2014
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 34:27, s. 9051-9058
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories.
  •  
4.
  • Ramamoorthy, Sripriya, et al. (författare)
  • Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography
  • 2016
  • Ingår i: Journal of Biomedical Optics. - : SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. - 1083-3668 .- 1560-2281. ; 21:2, s. 025003-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sound processing in the inner ear involves separation of the constituent frequencies along the length of the cochlea. Frequencies relevant to human speech (100 to 500 Hz) are processed in the apex region. Among mammals, the guinea pig cochlear apex processes similar frequencies and is thus relevant for the study of speech processing in the cochlea. However, the requirement for extensive surgery has challenged the optical accessibility of this area to investigate cochlear processing of signals without significant intrusion. A simple method is developed to provide optical access to the guinea pig cochlear apex in two directions with minimal surgery. Furthermore, all prior vibration measurements in the guinea pig apex involved opening an observation hole in the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here, this limitation is overcome by measuring the vibrations through the unopened otic capsule using phase-sensitive Fourier domain optical coherence tomography. The optically and surgically advanced method described here lays the foundation to perform minimally invasive investigation of speech-related signal processing in the cochlea. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  •  
5.
  • Ramamoorthy, Sripriya, et al. (författare)
  • The Second Filters Second Coming
  • 2015
  • Ingår i: MECHANICS OF HEARING: PROTEIN TO PERCEPTION. - : AMER INST PHYSICS. - 9780735413504
  • Konferensbidrag (refereegranskat)abstract
    • We measured sound-evoked vibrations at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate a gradient in frequency tuning among different cell types, going from a high best frequency at the inner hair cells to a lower one at the Hensen cells. This causes the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea as compared to the outer hair cells. These observations show that additional processing and filtering of acoustic signals occurs within the organ of Corti prior to inner hair cell excitation, thus reinstating a transformed second filter as a mechanism contributing to cochlear frequency tuning.
  •  
6.
  • Ramamoorthy, Sripriya, et al. (författare)
  • Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography
  • 2015
  • Ingår i: PHOTONIC THERAPEUTICS AND DIAGNOSTICS XI. - : Society of Photo-optical Instrumentation Engineers (SPIE). - 9781628413939 ; , s. 93031L-
  • Konferensbidrag (refereegranskat)abstract
    • In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.
  •  
7.
  • Zha, Dingjun, et al. (författare)
  • In vivo outer hair cell length changes expose the active process in the cochlea
  • 2012
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e32757-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Mammalian hearing is refined by amplification of the sound-evoked vibration of the cochlear partition. This amplification is at least partly due to forces produced by protein motors residing in the cylindrical body of the outer hair cell. To transmit power to the cochlear partition, it is required that the outer hair cells dynamically change their length, in addition to generating force. These length changes, which have not previously been measured in vivo, must be correctly timed with the acoustic stimulus to produce amplification.METHODOLOGY/PRINCIPAL FINDINGS: Using in vivo optical coherence tomography, we demonstrate that outer hair cells in living guinea pigs have length changes with unexpected timing and magnitudes that depend on the stimulus level in the sensitive cochlea.CONCLUSIONS/SIGNIFICANCE: The level-dependent length change is a necessary condition for directly validating that power is expended by the active process presumed to underlie normal hearing.
  •  
8.
  • Burwood, George, et al. (författare)
  • Best frequencies and temporal delays are similar across the low-frequency regions of the guinea pig cochlea
  • 2022
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 8:38
  • Tidskriftsartikel (refereegranskat)abstract
    • The cochlea maps tones with different frequencies to distinct anatomical locations. For instance, a faint 5000-hertz tone produces brisk responses at a place approximately 8 millimeters into the 18-millimeter-long guinea pig cochlea, but little response elsewhere. This place code pervades the auditory pathways, where neurons have "best frequencies" determined by their connections to the sensory cells in the hearing organ. However, frequency selectivity in cochlear regions encoding low-frequency sounds has not been systematically studied. Here, we show that low-frequency hearing works according to a unique principle that does not involve a place code. Instead, sound-evoked responses and temporal delays are similar across the low-frequency regions of the cochlea. These findings are a break from theories considered proven for 100 years and have broad implications for understanding information processing in the brainstem and cortex and for optimizing the stimulus delivery in auditory implants.
  •  
9.
  • Burwood, George W. S., et al. (författare)
  • Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography
  • 2019
  • Ingår i: QUANTITATIVE IMAGING IN MEDICINE AND SURGERY. - : AME PUBL CO. - 2223-4292 .- 2223-4306. ; 9:5, s. 858-881
  • Forskningsöversikt (refereegranskat)abstract
    • Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
  •  
10.
  • He, Wenxuan, et al. (författare)
  • An outer hair cell-powered global hydromechanical mechanism for cochlear amplification
  • 2022
  • Ingår i: Hearing Research. - : ELSEVIER. - 0378-5955 .- 1878-5891. ; 423
  • Forskningsöversikt (refereegranskat)abstract
    • It is a common belief that the mammalian cochlea achieves its exquisite sensitivity, frequency selectiv-ity, and dynamic range through an outer hair cell-based active process, or cochlear amplification. As a sound-induced traveling wave propagates from the cochlear base toward the apex, outer hair cells at a narrow region amplify the low level sound-induced vibration through a local feedback mechanism. This widely accepted theory has been tested by measuring sound-induced sub-nanometer vibrations within the organ of Corti in the sensitive living cochleae using heterodyne low-coherence interferometry and optical coherence tomography. The aim of this short review is to summarize experimental findings on the cochlear active process by the authors group. Our data show that outer hair cells are able to gener-ate substantial forces for driving the cochlear partition at all audible frequencies in vivo. The acoustically induced reticular lamina vibration is larger and more broadly tuned than the basilar membrane vibration. The reticular lamina and basilar membrane vibrate approximately in opposite directions at low frequen-cies and in the same direction at the best frequency. The group delay of the reticular lamina is larger than that of the basilar membrane. The magnitude and phase differences between the reticular lamina and basilar membrane vibration are physiologically vulnerable. These results contradict predictions based on the local feedback mechanism but suggest a global hydromechanical mechanism for cochlear amplifi-cation. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam. (c) 2021 Elsevier B.V. All rights reserved.
  •  
11.
  • He, Wenxuan, et al. (författare)
  • The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea
  • 2022
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevailing theory of cochlear function states that outer hair cells amplify sound-induced vibration to improve hearing sensitivity and frequency specificity. Recent micromechanical measurements in the basal turn of gerbil cochleae through the round window have demonstrated that the reticular lamina vibration lags the basilar membrane vibration, and it is physiologically vulnerable not only at the best frequency but also at the low frequencies. These results suggest that outer hair cells from a broad cochlear region enhance hearing sensitivity through a global hydromechanical mechanism. However, the time difference between the reticular lamina and basilar membrane vibration has been thought to result from a systematic measurement error caused by the optical axis non-perpendicular to the cochlear partition. To address this concern, we measured the reticular lamina and basilar membrane vibrations in the transverse direction through an opening in the cochlear lateral wall in this study. Present results show that the phase difference between the reticular lamina and basilar membrane vibration decreases with frequency by similar to 180 degrees from low frequencies to the best frequency, consistent with those measured through the round window. Together with the round-window measurement, the low-coherence interferometry through the cochlear lateral wall demonstrates that the time difference between the reticular lamina and basilar membrane vibration results from the cochlear active processing rather than a measurement error.
  •  
12.
  • Nuttall, Alfred L., et al. (författare)
  • A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain.
  •  
13.
  • Nuttall, Alfred L, et al. (författare)
  • Instrumentation for studies of cochlear mechanics : from von Békésy forward
  • 2012
  • Ingår i: Hearing Research. - : Elsevier BV. - 0378-5955 .- 1878-5891. ; 293:1-2, s. 3-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Georg von Békésy designed the instruments needed for his research. He also created physical models of the cochlea allowing him to manipulate the parameters (such as volume elasticity) that could be involved in controlling traveling waves. This review is about the specific devices that he used to study the motion of the basilar membrane thus allowing the analysis that lead to his Nobel Prize Award. The review moves forward in time mentioning the subsequent use of von Békésy's methods and later technologies important for motion studies of the organ of Corti. Some of the seminal findings and the controversies of cochlear mechanics are mentioned in relation to the technical developments.
  •  
14.
  • Zheng, Jiefu, et al. (författare)
  • Persistence of past stimulations : storing sounds within the inner ear
  • 2011
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 100:7, s. 1627-1634
  • Tidskriftsartikel (refereegranskat)abstract
    • Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy