SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nylander Johan 1969 ) "

Sökning: WFRF:(Nylander Johan 1969 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hansson, Josef, 1991, et al. (författare)
  • Effects of high temperature treatment of carbon nanotube arrays on graphite : Increased crystallinity, anchoring and inter-tube bonding
  • 2020
  • Ingår i: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 31:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal treatment of carbon nanotubes (CNTs) can significantly improve their mechanical, electrical and thermal properties due to reduced defects and increased crystallinity. In this work we investigate the effect of annealing at 3000 degrees C of vertically aligned CNT arrays synthesized by chemical vapor deposition (CVD) on graphite. Raman measurements show a drastically reduced amount of defects and, together with transmission electron microscope (TEM) diffraction measurements, an increased average crystallite size of around 50%, which corresponds to a 124% increase in Young's modulus. We also find a tendency for CNTs to bond to each other with van der Waals (vdW) forces, which causes individual CNTs to closely align with each other. This bonding causes a densification effect on the entire CNT array, which appears at temperatures >1000 degrees C. The densification onset temperature corresponds to the thermal decomposition of oxygen containing functional groups, which otherwise prevents close enough contact for vdW bonding. Finally, the remaining CVD catalyst on the bottom of the CNT array is evaporated during annealing, enabling direct anchoring of the CNTs to the underlying graphite substrate.
  •  
3.
  • Nylander, Johan A. A., 1969- (författare)
  • Bayesian Phylogenetics and the Evolution of Gall Wasps
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis concerns the phylogenetic relationships and the evolution of the gall-inducing wasps belonging to the family Cynipidae. Several previous studies have used morphological data to reconstruct the evolution of the family. DNA sequences from several mitochondrial and nuclear genes where obtained and the first molecular, and combined molecular and morphological, analyses of higher-level relationships in the Cynipidae is presented. A Bayesian approach to data analysis is adopted, and models allowing combined analysis of heterogeneous data, such as multiple DNA data sets and morphology, are developed. The performance of these models is evaluated using methods that allow the estimation of posterior model probabilities, thus allowing selection of most probable models for the use in phylogenetics. The use of Bayesian model averaging in phylogenetics, as opposed to model selection, is also discussed. It is shown that Bayesian MCMC analysis deals efficiently with complex models and that morphology can influence combined-data analyses, despite being outnumbered by DNA data. This emphasizes the utility and potential importance of using morphological data in statistical analyses of phylogeny. The DNA-based and combined-data analyses of cynipid relationships differ from previous studies in two important respects. First, it was previously believed that there was a monophyletic clade of woody rosid gallers but the new results place the non-oak gallers in this assemblage (tribes Pediaspidini, Diplolepidini, and Eschatocerini) outside the rest of the Cynipidae. Second, earlier studies have lent strong support to the monophyly of the inquilines (tribe Synergini), gall wasps that develop inside the galls of other species. The new analyses suggest that the inquilines either originated several times independently, or that some inquilines secondarily regained the ability to induce galls. Possible reasons for the incongruence between morphological and DNA data is discussed in terms of heterogeneity in evolutionary rates among lineages, and convergent evolution of morphological characters.
  •  
4.
  • Ronquist, Fredrik, et al. (författare)
  • Life history of Parnips and the evolutionary origin of gall wasps
  • 2018
  • Ingår i: Journal of Hymenoptera Research. - : Pensoft Publishers. - 1070-9428 .- 1314-2607. ; 65, s. 91-110
  • Tidskriftsartikel (refereegranskat)abstract
    • By mechanisms that are still unknown, gall wasps (Cynipidae) induce plants to form complex galls, inside which their larvae develop. The family also includes inquilines (phytophagous forms that live inside the galls of other gall inducers) and possibly also parasitoids of gall inducers. The origin of cynipids is shrouded in mystery, but it has been clear for some time that a key group in making progress on this question is the ‘figitoid inquilines’. They are gall-associated relatives of cynipids, whose biology is poorly known. Here, we report the first detailed data on the life history of a figitoid inquiline, the genus Parnips. Dissections of mature galls show that Parnips nigripes is a parasitoid of Barbotinia oraniensis, a cynipid that induces single-chambered galls inside the seed capsules of annual poppies (Papaver rhoeas and P. dubium). Galls with pupae of Parnips nigripes always contain the remains of a terminal-instar larva of B. oraniensis. The mandibles of the terminal-instar larva of P. nigripes are small and equipped with a single sharp tooth, a shape that is characteristic of carnivorous larvae. The weight of P. nigripes pupae closely match that of the same sex of B. oraniensis pupae, indicating that Parnips makes efficient use of its host and suggesting that ovipositing Parnips females lay eggs that match the sex of the host larva. Dissection of young galls show that another species of Parnips, hitherto undescribed, spends its late larval life as an ectoparasitoid of Iraella hispanica, a cynipid that induces galls in flowers of annual poppies. These and other observations suggest that Parnips shares the early endoparasitic-late ectoparasitic life history described for all other cynipoid parasitoids. Our findings imply that gall wasps evolved from parasitoids of gall insects. The original hosts could not have been cynipids but possibly chalcidoids, which appear to be the hosts of several extant figitoid inquilines. It is still unclear whether the gall inducers evolved rapidly from these ancestral parasitoids, or whether they were preceded by a long series of intermediate forms that were phytophagous inquilines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy