SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(O'Cofaigh C.) "

Search: WFRF:(O'Cofaigh C.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dowdeswell, J. A., et al. (author)
  • High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin : Implications for ice-sheet grounding and deep-keeled icebergs
  • 2010
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3518-3531
  • Journal article (peer-reviewed)abstract
    • High-resolution geophysical evidence on the seafloor morphology and acoustic stratigraphy of the Yermak Plateau and northern Svalbard margin between 79°20′ and 81°30′N and 5° and 22°E is presented. Geophysical datasets are derived from swath bathymetry and sub-bottom acoustic profiling and are combined with existing cores to derive chronological control. Seafloor landforms, in the form of ice-produced lineations, iceberg ploughmarks of various dimensions (including features over 80 m deep and down to about 1000 m), and a moat indicating strong currents are found. The shallow stratigraphy of the Yermak Plateau shows three acoustic units: the first with well-developed stratification produced by hemipelagic sedimentation, often draped over a strong and undulating internal reflector; a second with an undulating upper surface and little acoustic penetration, indicative of the action of ice; a third unit of an acoustically transparent facies, resulting from debris flows. Core chronology suggests a MIS 6 age for the undulating seafloor above about 580 m. There are several possible explanations, including: (a) the flow of a major grounded ice sheet across the plateau crest from Svalbard (least likely given the consolidation state of the underlying sediments); (b) the more transient encroachment of relatively thin ice from Svalbard; or (c) the drift across the plateau of an ice-shelf remnant or megaberg from the Arctic Basin. The latter is our favoured explanation given the evidence currently at our disposal.
  •  
2.
  • Morlighem, M., et al. (author)
  • BedMachine v3 : Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation
  • 2017
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:21, s. 11051-11061
  • Journal article (peer-reviewed)abstract
    • Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.420.05m, which is 7cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
  •  
3.
  • Hogan, K. A., et al. (author)
  • Submarine landforms and ice-sheet flow in the Kvitøya Trough, northwestern Barents Sea
  • 2010
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3545-3562
  • Journal article (peer-reviewed)abstract
    • High-resolution geophysical and sediment core data are used to investigate the pattern and dynamics of former ice flow in Kvitøya Trough, northwestern Barents Sea. A new swath-bathymetric dataset identifies three types of submarine landform in the study area (streamlined landforms, meltwater channels and cavities, iceberg scours). Subglacially produced streamlined landforms provide a record of ice flow through Kvitøya Trough during the last glaciation. Flow directions are inferred from the orientations of streamlined landforms (drumlins, crag-and-tail features). Ice flowed northward for at least 135 km from an ice divide at the southern end of Kvitøya Trough. A large channel-cavity system incised into bedrock in the southern trough indicates that subglacial meltwater was present at the former ice-sheet base. Modest landform elongation ratios and a lack of mega-scale glacial lineations suggest that, although ice in Kvitøya Trough was melting at the bed and flowed faster than the likely thin and cold-based ice on adjacent banks, a major ice stream probably did not occupy the trough. Retreat was relatively rapid after 14–13.5 14C kyr B.P. and probably progressed via ice sheet-bed decoupling in response to rising sea level. There is little evidence for still stands during ice retreat or of ice-proximal deglacial sediments. Relict iceberg scours in present-day water depths of more than 350 m in the northern trough indicate that calving was an important mass loss mechanism during retreat.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view