SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Toole P. W.) "

Sökning: WFRF:(O'Toole P. W.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
3.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
4.
  •  
5.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Kennedy, K. M., et al. (författare)
  • Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 613:7945, s. 639-649
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
  •  
13.
  •  
14.
  • Costea, P. I., et al. (författare)
  • Enterotypes in the landscape of gut microbial community composition
  • 2018
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept.
  •  
15.
  • Santoro, Aurelia, et al. (författare)
  • Combating inflammaging through a Mediterranean whole diet approach : The NU-AGE project's conceptual framework and design
  • 2014
  • Ingår i: Mechanisms of Ageing and Development. - Clare, Ireland : Elsevier BV. - 0047-6374 .- 1872-6216. ; 136-137, s. 3-13
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of a chronic, low grade, inflammatory status named "inflammaging" is a major characteristic of ageing, which plays a critical role in the pathogenesis of age-related diseases. Inflammaging is both local and systemic, and a variety of organs and systems contribute inflammatory stimuli that accumulate lifelong. The NU-AGE rationale is that a one year Mediterranean whole diet (considered by UNESCO a heritage of humanity), newly designed to meet the nutritional needs of the elderly, will reduce inflammaging in fully characterized subjects aged 65-79 years of age, and will have systemic beneficial effects on health status (physical and cognitive). Before and after the dietary intervention a comprehensive set of analyses, including omics (transcriptomics, epigenetics, metabolomics and metagenomics) will be performed to identify the underpinning molecular mechanisms. NU-AGE will set up a comprehensive database as a tool for a systems biology approach to inflammaging and nutrition. NU-AGE is highly interdisciplinary, includes leading research centres in Europe on nutrition and ageing, and is complemented by EU multinational food industries and SMEs, interested in the production of functional and enriched/advanced traditional food tailored for the elderly market, and European Federations targeting policy makers and major stakeholders, from consumers to EU Food & Drink Industries.
  •  
16.
  •  
17.
  • Murphy, E. F., et al. (författare)
  • Composition and energy harvesting capacity of the gut microbiota : relationship to diet, obesity and time in mouse models
  • 2010
  • Ingår i: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 59:12, s. 1635-42
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: Increased efficiency of energy harvest, due to alterations in the gut microbiota (increased Firmicutes and decreased Bacteroidetes), has been implicated in obesity in mice and humans. However, a causal relationship is unproven and contributory variables include diet, genetics and age. Therefore, we explored the effect of a high-fat (HF) diet and genetically determined obesity (ob/ob) for changes in microbiota and energy harvesting capacity over time.METHODS: Seven-week-old male ob/ob mice were fed a low-fat diet and wild-type mice were fed either a low-fat diet or a HF-diet for 8 weeks (n=8/group). They were assessed at 7, 11 and 15 weeks of age for: fat and lean body mass (by NMR); faecal and caecal short-chain fatty acids (SCFA, by gas chromatography); faecal energy content (by bomb calorimetry) and microbial composition (by metagenomic pyrosequencing).RESULTS: A progressive increase in Firmicutes was confirmed in both HF-fed and ob/ob mice reaching statistical significance in the former, but this phylum was unchanged over time in the lean controls. Reductions in Bacteroidetes were also found in ob/ob mice. However, changes in the microbiota were dissociated from markers of energy harvest. Thus, although the faecal energy in the ob/ob mice was significantly decreased at 7 weeks, and caecal SCFA increased, these did not persist and faecal acetate diminished over time in both ob/ob and HF-fed mice, but not in lean controls. Furthermore, the proportion of the major phyla did not correlate with energy harvest markers.CONCLUSION: The relationship between the microbial composition and energy harvesting capacity is more complex than previously considered. While compositional changes in the faecal microbiota were confirmed, this was primarily a feature of high-fat feeding rather than genetically induced obesity. In addition, changes in the proportions of the major phyla were unrelated to markers of energy harvest which changed over time. The possibility of microbial adaptation to diet and time should be considered in future studies.
  •  
18.
  •  
19.
  • Cronin, O., et al. (författare)
  • Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis
  • 2022
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 0171-967X .- 1432-0827. ; 110:3, s. 273-284
  • Tidskriftsartikel (refereegranskat)abstract
    • The human microbiota functions at the interface between diet, medication-use, lifestyle, host immune development and health. It is therefore closely aligned with many of the recognised modifiable factors that influence bone mass accrual in the young, and bone maintenance and skeletal decline in older populations. While understanding of the relationship between micro-organisms and bone health is still in its infancy, two decades of broader microbiome research and discovery supports a role of the human gut microbiome in the regulation of bone metabolism and pathogenesis of osteoporosis as well as its prevention and treatment. Pre-clinical research has demonstrated biological interactions between the microbiome and bone metabolism. Furthermore, observational studies and randomized clinical trials have indicated that therapeutic manipulation of the microbiota by oral administration of probiotics may influence bone turnover and prevent bone loss in humans. In this paper, we summarize the content, discussion and conclusions of a workshop held by the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society in October, 2020. We provide a detailed review of the literature examining the relationship between the microbiota and bone health in animal models and in humans, as well as formulating the agenda for key research priorities required to advance this field. We also underscore the potential pitfalls in this research field that should be avoided and provide methodological recommendations to facilitate bridging the gap from promising concept to a potential cause and intervention target for osteoporosis.
  •  
20.
  • Hicks, Rodney J., et al. (författare)
  • ENETS standardized (synoptic) reporting for molecular imaging studies in neuroendocrine tumours
  • 2022
  • Ingår i: Journal of neuroendocrinology. - : John Wiley & Sons. - 0953-8194 .- 1365-2826. ; 34:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Neuroendocrine Tumor Society (ENETS) promotes practices and procedures that aim to improve the standard of care delivered to patients diagnosed with or suspected of having neuroendocrine neoplasia (NEN). At its annual Scientific Advisory Board Meeting in 2018, experts in imaging, pathology and clinical care of patients with NEN drafted guidance for the standardised reporting of diagnostic studies critical to the diagnosis, grading, staging and treatment of NEN. These included pathology, radiology, endoscopy and molecular imaging procedures. In an iterative process, a synoptic reporting template for molecular imaging procedures was developed to guide personalised therapies. Following pilot implementation and refinement within the ENETS Center of Excellence network, harmonisation with specialist imaging societies including the Society of Nuclear Medicine, European Association of Nuclear Medicine and the International Cancer Imaging Society will be pursued.
  •  
21.
  • Watson, Hunna J., et al. (författare)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • Ingår i: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
22.
  •  
23.
  • Martell, S., et al. (författare)
  • The GALAH survey : Scientific motivation
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 449:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
  •  
24.
  •  
25.
  • Stenberg, Lars, et al. (författare)
  • Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G
  • 1994
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 269:18, s. 13458-13464
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell surface proteins that bind to the Fc part of immunoglobulin (Ig) A and/or IgG are expressed by many strains of the group A Streptococcus, an important human pathogen. Two extensively characterized proteins in this group of molecules are protein Arp that preferentially binds IgA and protein H that binds IgG. In addition, recent work has shown that many group A streptococcal strains express a novel type of Fc-binding protein, designated protein Sir, that binds both IgA and IgG. Protein Sir22, the molecule expressed by a strain of serotype M22, has now been purified and characterized after expression of the cloned gene in Escherichia coli. Dot-blot analysis with a large number of purified monoclonal Igs showed that protein Sir22 reacted with 19 out of 20 IgA proteins and with 19 out of 24 IgG proteins. The affinity constants for the reactions between protein Sir22 and Ig were determined to be 7.0 x 10(8) M-1 for serum IgA, 2.4 x 10(8 M-1 for secretory IgA, and 7.8 x 10(8) M-1 for IgG. Inhibition experiments showed that the bindings of IgA and IgG to protein Sir22 were mutually exclusive, indicating shared or contiguous binding sites. Analysis of the sequence of the sir22 gene indicated a gene product with 365 amino acid residues, including a 41-residue signal peptide. The processed form of the protein, 324 residues, has a calculated M(r) of 37,168. Deletion analysis of the sir22 gene showed that a 156-residue NH2-terminal fragment of protein Sir22 retained the ability to bind both IgA and IgG. The overall organization of protein Sir22 is similar to that of the IgA-binding protein Arp and the IgG-binding protein H. All three of these proteins are members of the M protein family and have a central repeat region of the C type.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy