SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Oei S) "

Search: WFRF:(Oei S)

  • Result 1-27 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Willems, S. M., et al. (author)
  • Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10-8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality. © The Author(s) 2017.
  •  
4.
  • Oei, L., et al. (author)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • In: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Journal article (peer-reviewed)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
5.
  • Estrada, Karol, et al. (author)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Journal article (peer-reviewed)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
6.
  • Goodridge, JP, et al. (author)
  • Remodeling of secretory lysosomes during education tunes functional potential in NK cells
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 514-
  • Journal article (peer-reviewed)abstract
    • Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.
  •  
7.
  •  
8.
  • Moayyeri, Alireza, et al. (author)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Journal article (peer-reviewed)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
9.
  • Nielson, Carrie M., et al. (author)
  • Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2
  • 2016
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 31:12, s. 2085-2097
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n=15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n=21,701) and clinical vertebral fracture (n=5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF]=3%) was associated with higher vBMD (β=0.22, p=1.9×10-8) and decreased risk of radiographic vertebral fracture (odds ratio [OR]=0.75; false discovery rate [FDR] p=0.01). In 1p36.12, rs12742784 (MAF=21%) was associated with higher vBMD (β=0.09, p=1.2×10-10) and decreased risk of clinical vertebral fracture (OR=0.82; FDR p=7.4×10-4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β=0.28, FDR p=0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β=0.12, FDR p=1.7×10-3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.
  •  
10.
  • Oei, Ling, et al. (author)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • In: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593 .- 1468-6244. ; 51:2, s. 122-131
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
11.
  • Rio, Ebonie Kendra, et al. (author)
  • ICON PART-T 2019-International Scientific Tendinopathy Symposium Consensus : recommended standards for reporting participant characteristics in tendinopathy research (PART-T)
  • 2020
  • In: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 54:11, s. 627-630
  • Journal article (peer-reviewed)abstract
    • We aimed to establish consensus for reporting recommendations relating to participant characteristics in tendon research. A scoping literature review of tendinopathy studies (Achilles, patellar, hamstring, gluteal and elbow) was followed by an online survey and face-to-face consensus meeting with expert healthcare professionals (HCPs) at the International Scientific Tendon Symposium, Groningen 2018. We reviewed 263 papers to form statements for consensus and invited 30 HCPs from different disciplines and geographical locations; 28 completed the survey and 15 attended the meeting. There was consensus that the following data should be reported for cases and controls: sex, age, standing height, body mass, history of tendinopathy, whether imaging was used to confirm pathology, loading tests, pain location, symptom duration and severity, level of disability, comorbidities, physical activity level, recruitment source and strategies, and medication use history. Standardised reporting of participant characteristics aims to benefit patients and clinicians by guiding researchers in the conduct of their studies. We provide free resources to facilitate researchers adopting our recommendations.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Vicenzino, Bill, et al. (author)
  • ICON 2019-International Scientific Tendinopathy Symposium Consensus : There are nine core health-related domains for tendinopathy (CORE DOMAINS): Delphi study of healthcare professionals and patients
  • 2020
  • In: British Journal of Sports Medicine. - : BMJ PUBLISHING GROUP. - 0306-3674 .- 1473-0480. ; 54:8, s. 444-451
  • Journal article (peer-reviewed)abstract
    • BackgroundThe absence of any agreed-upon tendon health-related domains hampers advances in clinical tendinopathy research. This void means that researchers report a very wide range of outcome measures inconsistently. As a result, substantial synthesis/meta-analysis of tendon research findings is almost futile despite researchers publishing busily. We aimed to determine options for, and then define, core health-related domains for tendinopathy.MethodsWe conducted a Delphi study of healthcare professionals (HCP) and patients in a three-stage process. In stage 1, we extracted candidate domains from clinical trial reports and developed an online survey. Survey items took the form: 'The 'candidate domain' is important enough to be included as a core health-related domain of tendinopathy'; response options were: agree, disagree, or unsure. In stage 2, we administered the online survey and reported the findings. Stage 3 consisted of discussions of the findings of the survey at the ICON (International Scientific Tendinopathy Symposium Consensus) meeting. We set 70% participant agreement as the level required for a domain to be considered 'core'; similarly, 70% agreement was required for a domain to be relegated to 'not core' (see Results next).ResultsTwenty-eight HCP (92% of whom had >10 years of tendinopathy experience, 71% consulted >10 cases per month) and 32 patients completed the online survey. Fifteen HCP and two patients attended the consensus meeting. Of an original set of 24 candidate domains, the ICON group deemed nine domains to be core. These were: (1) patient rating of condition, (2) participation in life activities (day to day, work, sport), (3) pain on activity/loading, (4) function, (5) psychological factors, (6) physical function capacity, (7) disability, (8) quality of life and (9) pain over a specified time. Two of these (2, 6) were an amalgamation of five candidate domains. We agreed that seven other candidate domains were not core domains: range of motion, pain on clinician applied test, clinical examination, palpation, drop out, sensory modality pain and pain without other specification. We were undecided on the other five candidate domains of physical activity, structure, medication use, adverse effects and economic impact.ConclusionNine core domains for tendon research should guide reporting of outcomes in clinical trials. Further research should determine the best outcome measures for each specific tendinopathy (ie, core outcome sets).
  •  
16.
  • Xu, D., et al. (author)
  • Are changes in meniscus volume and extrusion associated to knee osteoarthritis development? A structural equation model
  • 2021
  • In: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 29:10, s. 1426-1431
  • Journal article (peer-reviewed)abstract
    • Objective: To explore the interplay between (changes in) medial meniscus volume, meniscus extrusion and radiographic knee osteoarthritis (OA) development over 30 months follow-up (FU). Methods: Data from the PRevention of knee Osteoarthritis in Overweight Females study were used. This cohort included 407 middle-aged women with a body mass index ≥27 kg/m2, who were free of knee OA at baseline. Demographics were collected by questionnaires at baseline. All menisci at both baseline and FU were automatically segmented from MRI scans to obtain the meniscus volume and the change over time (delta volume). Baseline and FU meniscus body extrusion was quantitatively measured on mid-coronal proton density MR images. A structural equation model was created to assess the interplay between both medial meniscus volume and central extrusion at baseline, delta volume, delta extrusion, and incident radiographic knee OA at FU. Results: The structural equation modeling yielded a fair to good fit of the data. The direct effects of both medial meniscus volume and extrusion at baseline on incident OA were statistically significant (Estimate = 0.124, p = 0.029, and Estimate = 0.194, p < 0.001, respectively). Additional indirect effects on incident radiographic OA through delta meniscus volume or delta meniscus extrusion were not statistically significant. Conclusion: Baseline medial meniscus volume and extrusion were associated to incidence of radiographic knee OA at FU in middle-aged overweight and obese women, while their changes were not involved in these effects. To prevent knee OA, interventions might need to target the onset of meniscal pathologies rather than their progression.
  •  
17.
  • Zheng, Hou-Feng, et al. (author)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Journal article (peer-reviewed)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
18.
  • Armbrecht, G., et al. (author)
  • Vertebral Scheuermann's disease in Europe: prevalence, geographic variation and radiological correlates in men and women aged 50 and over
  • 2015
  • In: Osteoporosis International. - : Springer Science and Business Media LLC. - 1433-2965 .- 0937-941X. ; 26:10, s. 2509-2519
  • Journal article (peer-reviewed)abstract
    • The Summary In 27 centres across Europe, the prevalence of deforming spinal Scheuermann's disease in age-stratified population-based samples of over 10,000 men and women aged 50+ averaged 8 % in each sex, but was highly variable between centres. Low DXA BMD was un-associated with Scheuermann's, helping the differential diagnosis from osteoporosis. Introduction This study aims to assess the prevalence of Scheuermann's disease of the spine across Europe in men and women over 50 years of age, to quantitate its association with bone mineral density (BMD) and to assess its role as a confounder for the radiographic diagnosis of osteoporotic fracture. Methods In 27 centres participating in the population-based European Vertebral Osteoporosis Study (EVOS), standardised lateral radiographs of the lumbar and of the thoracic spine from T4 to L4 were assessed in all those of adequate quality. The presence of Scheuermann's disease, a confounder for prevalent fracture in later life, was defined by the presence of at least one Schmorl's node or irregular endplate together with kyphosis (sagittal Cobb angle > 40A degrees between T4 and T12) or a wedged-shaped vertebral body. Alternatively, the (rare) Edgren-Vaino sign was taken as diagnostic. The 6-point-per-vertebral-body (13 vertebrae) method was used to assess osteoporotic vertebral shape and fracture caseness. DXA BMD of the L2-L4 and femoral neck regions was measured in subsets. We also assessed the presence of Scheuermann's by alternative published algorithms when these used the radiographic signs we assessed. Results Vertebral radiographic images from 4486 men and 5655 women passed all quality checks. Prevalence of Scheuermann's varied considerably between centres, and based on random effect modelling, the overall European prevalence using our method was 8 % with no significant difference between sexes. The highest prevalences were seen in Germany, Sweden, the UK and France and low prevalences were seen in Hungary, Poland and Slovakia. Centre-level prevalences in men and women were highly correlated. Scheuermann's was not associated with BMD of the spine or hip. Conclusions Since most of the variation in population impact of Scheuermann's was unaccounted for by the radiological and anthropometric data, the search for new genetic and environmental determinants of this disease is encouraged.
  •  
19.
  • Hemke, Robert, et al. (author)
  • Imaging assessment of children presenting with suspected or known juvenile idiopathic arthritis : ESSR-ESPR points to consider.
  • 2020
  • In: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 30:10, s. 5237-5249
  • Journal article (peer-reviewed)abstract
    • Juvenile idiopathic arthritis (JIA) is the most common paediatric rheumatic disease. It represents a group of heterogenous inflammatory disorders with unknown origin and is a diagnosis of exclusion in which imaging plays an important role. JIA is defined as arthritis of one or more joints that begins before the age of 16 years, persists for more than 6 weeks and is of unknown aetiology and pathophysiology. The clinical goal is early suppression of inflammation to prevent irreversible joint damage which has shifted the emphasis from detecting established joint damage to proactively detecting inflammatory change. This drives the need for imaging techniques that are more sensitive than conventional radiography in the evaluation of inflammatory processes as well as early osteochondral change. Physical examination has limited reliability, even if performed by an experienced clinician, emphasising the importance of imaging to aid in clinical decision-making. On behalf of the European Society of Musculoskeletal Radiology (ESSR) arthritis subcommittee and the European Society of Paediatric Radiology (ESPR) musculoskeletal imaging taskforce, based on literature review and/or expert opinion, we discuss paediatric-specific imaging characteristics of the most commonly involved, in literature best documented and clinically important joints in JIA, namely the temporomandibular joints (TMJs), spine, sacroiliac (SI) joints, wrists, hips and knees, followed by a clinically applicable point to consider for each joint. We will also touch upon controversies in the current literature that remain to be resolved with ongoing research. KEY POINTS: • Juvenile idiopathic arthritis (JIA) is the most common chronic paediatric rheumatic disease and, in JIA imaging, is increasingly important to aid in clinical decision-making. • Conventional radiographs have a lower sensitivity and specificity for detection of disease activity and early destructive change, as compared to MRI or ultrasound. Nonetheless, radiography remains important, particularly in narrowing the differential diagnosis and evaluating growth disturbances. • Mainly in peripheral joints, ultrasound can be helpful for assessment of inflammation and guiding joint injections. In JIA, MRI is the most validated technique. MRI should be considered as the modality of choice to assess the axial skeleton or where the clinical presentation overlaps with JIA.
  •  
20.
  •  
21.
  • Liu, Ching-Ti, et al. (author)
  • Assessment of gene-by-sex interaction effect on bone mineral density
  • 2012
  • In: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 27:10, s. 2051-2064
  • Journal article (peer-reviewed)abstract
    • Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p?
  •  
22.
  •  
23.
  • Liu, Lisa L., et al. (author)
  • Ex Vivo Expanded Adaptive NK Cells Effectively Kill Primary Acute Lymphoblastic Leukemia Cells
  • 2017
  • In: CANCER IMMUNOLOGY RESEARCH. - 2326-6066 .- 2326-6074. ; 5:8, s. 654-665
  • Journal article (peer-reviewed)abstract
    • Manipulation of human natural killer (NK) cell repertoires promises more effective strategies for NK cell-based cancer immunotherapy. A subset of highly differentiated NK cells, termed adaptive NK cells, expands naturally in vivo in response to human cytomegalovirus (HCMV) infection, carries unique repertoires of inhibitory killer cell immunoglobulin-like receptors (KIR), and displays strong cytotoxicity against tumor cells. Here, we established a robust and scalable protocol for ex vivo generation and expansion of adaptive NK cells for cell therapy against pediatric acute lymphoblastic leukemia (ALL). Culture of polyclonal NK cells together with feeder cells expressing HLA-E, the ligand for the activating NKG2C receptor, led to selective expansion of adaptive NK cells with enhanced allor-eactivity against HLA-mismatched targets. The ex vivo expanded adaptive NK cells gradually obtained a more differentiated phenotype and were specific and highly efficient killers of allogeneic pediatric T-and precursor B-cell acute lymphoblastic leukemia (ALL) blasts, previously shown to be refractory to killing by autologous NK cells and the NK-cell line NK92 currently in clinical testing. Selective expansion of NK cells that express one single inhibitory KIR for self-HLA class I would allow exploitation of the full potential of NK-cell alloreactivity in cancer immunotherapy. In summary, our data suggest that adaptive NK cells may hold utility for therapy of refractory ALL, either as a bridge to transplant or for patients that lack stem cell donors.
  •  
24.
  • Plagou, Athena, et al. (author)
  • Recommendations of the ESSR Arthritis Subcommittee on Ultrasonography in Inflammatory Joint Disease
  • 2016
  • In: Seminars in Musculoskeletal Radiology. - : Georg Thieme Verlag KG. - 1089-7860 .- 1098-898X. ; 20:5, s. 496-506
  • Journal article (peer-reviewed)abstract
    • This article presents the recommendations of the European Society of Musculoskeletal Radiology Arthritis Subcommittee. on the use of ultrasonography (US) in rheumatic disease, focused on the examination of joints in the adult population. The recommended examination technique and protocols used in a radiologic work-up are discussed. The main US features that can lead to a final diagnosis in the most common rheumatic diseases are addressed. The differential diagnosis that should be considered at image interpretation is presented. The role of US in interventional procedures and clinically important recent developments is also discussed.
  •  
25.
  • van Tiel, J., et al. (author)
  • Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis
  • 2013
  • In: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 23:2, s. 496-504
  • Journal article (peer-reviewed)abstract
    • To assess the reproducibility of 3D delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 3 T in early stage knee osteoarthritis (OA) patients. In 20 patients, 3D dGEMRIC at 3 T was acquired twice within 7 days. To correct for patient motion during acquisition, all images were rigidly registered in 3D. Eight anatomical cartilage ROIs were analysed on both images of each patient. Capability of dGEMRIC to yield T1 maps that reproducibly distinguish spatial differences in cartilage quality was assessed in two ROIs within a single slice in each patient. Reproducibility was assessed using ICCs and Bland-Altman plots. ICCs ranged from 0.87 to 0.95, indicating good reproducibility. T1 maps revealed reproducible spatial differences in cartilage quality (ICC 0.79). Based on the Bland-Altman plots, we defined a threshold of 95 ms to determine if a change in dGEMRIC outcome in longitudinal research was statistically significant. 3D knee dGEMRIC at 3 T combined with 3D image registration is a highly reproducible measure of cartilage quality in early stage OA. Therefore, dGEMRIC may be a valuable tool in the non-invasive evaluation of cartilage quality changes in longitudinal research in patients with early stage OA and focal cartilage defects. aEuro cent Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) can assess osteoarthritis aEuro cent dGEMRIC yields highly reproducible T1 values in early stage osteoarthritic patients aEuro cent A threshold was established to determine significant changes in dGEMRIC outcomes aEuro cent dGEMRIC can be used to evaluate cartilage quality in longitudinal research.
  •  
26.
  •  
27.
  • Zhang, F., et al. (author)
  • Factors associated with meniscal body extrusion on knee MRI in overweight and obese women
  • 2017
  • In: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 25:5, s. 694-699
  • Journal article (peer-reviewed)abstract
    • Objective: To determine factors associated with higher degree of meniscal body extrusion in overweight and obese women at high risk of knee osteoarthritis (OA). Design: We used baseline data of the PRevention of knee Osteoarthritis in Overweight Females (PROOF) study, Netherlands, comprising overweight or obese women aged 50-60 years, free of clinical knee OA. All subjects completed a questionnaire on knee complaints and physical activity, underwent physical examination, radiography, and 1.5 T magnetic resonance imaging (MRI) of both knees. Using the mid-coronal MRI slice, one blinded observer measured tibial plateau width and meniscal body extrusion of both menisci in both knees. The association between baseline factors and meniscal extrusion, were analyzed with a random effects regression model. In addition, we used a fixed effect regression model for evaluation of knee-specific factors. Results: Mean age of the included women (n = 395) was 55.7 years and mean body mass index (BMI) 32.4 kg/m2. Of all knees, 23% had an absolute medial meniscus body extrusion ≥3.0 mm and 4% had lateral meniscus body extrusion ≥3.0 mm. In the multivariable model, the medial meniscus extrusion was increased by 0.44 mm (95% confidence interval [CI] 0.11, 0.77) when a medial meniscus tear was present, by 0.20 mm per 5 kg/m2 (95% CI 0.05, 0.35) increase in BMI and by 0.25 in the presence of mild knee symptoms (95% CI 0.05 to 0.44). Kellgren-Lawrence (KL) grade ≥1 and tibia width were associated with increased both medial and lateral extrusion. Conclusion: In women, ipsilateral meniscus tear and high BMI are factors associated with medial meniscus body extrusion.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-27 of 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view