SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohshima Kay I.) "

Sökning: WFRF:(Ohshima Kay I.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2013
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Aad, G., et al. (författare)
  • 2012
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  • Aad, G., et al. (författare)
  • 2012
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Aad, G., et al. (författare)
  • 2011
  • swepub:Mat__t (refereegranskat)
  •  
6.
  • Aad, G., et al. (författare)
  • 2011
  • swepub:Mat__t (refereegranskat)
  •  
7.
  •  
8.
  • Kitade, Yujiro, et al. (författare)
  • Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:10, s. 3528-3534
  • Tidskriftsartikel (refereegranskat)abstract
    • One year moorings at depths greater than 3000m on the continental slope off Vincennes Bay, East Antarctica, reveal the cold (<-0.5 degrees C) and fresh (<34.64) signals of newly formed Antarctic Bottom Water (AABW). The signal appeared in June, 3 months after the onset of active sea-ice production in the nearby Vincennes Bay Polynya (VBP). The AABW signal continued for about 5 months at two moorings, with 1 month delay at the western site further downstream. Ship-based hydrographic data are in agreement, detecting the westward spread of new AABW over the continental slope from VBP. On the continental shelf, Dense Shelf Water (DSW) formation is observed by instrumented seals, in and around the VBP during autumn, and we estimate its transport to be 0.16 +/- 0.07 (x 106m3s-1). We conclude that the DSW formed in this region, albeit from a modest amount of sea-ice production, nonetheless contributes to the upper layer of AABW in Australian-Antarctic Basin.
  •  
9.
  • Nakanowatari, Takuya, et al. (författare)
  • Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk
  • 2017
  • Ingår i: Polar Science. - : Elsevier BV. - 1873-9652 .- 1876-4428. ; 13, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperaturedepth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spikelike signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0 sigma(theta), which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.
  •  
10.
  • Ohshima, Kay I., et al. (författare)
  • Antarctic BottomWater production by intense sea-ice formation in the Cape Darnley polynya
  • 2013
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 6:3, s. 235-240
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of Antarctic Bottom Water-the cold, dense water that occupies the abyssal layer of the global ocean-is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been previously documented. The presence of another source has been identified in hydrographic and tracer data, although the site of formation is not well constrained. Here we document the formation of dense shelf water in the Cape Darnley polynya (65 degrees -69 degrees E) and its subsequent transformation into bottom water using data from moorings and instrumented elephant seals (Mirounga leonina). Unlike the previously identified sources of Antarctic Bottom Water, which require the presence of an ice shelf or a large storage volume, bottom water production at the Cape Darnley polynya is driven primarily by the flux of salt released by sea-ice formation. We estimate that about 0.3-0.7 x 10(6) m(3) s(-1) of dense shelf water produced by the Cape Darnley polynya is transformed into Antarctic BottomWater. The transformation of this water mass, which we term Cape Darnley BottomWater, accounts for 6-13% of the circumpolar total.
  •  
11.
  • Silvano, Alessandro, et al. (författare)
  • Observing Antarctic Bottom Water in the Southern Ocean
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW's key role in regulating Earth's climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy